amazon sidewalk
]

Amazon Sidewalk Sid APl Developer Guide

Protocol Stack 1.0, Document Revision A
March 26, 2023

©2023 Amazon Technologies, Inc.
Non-confidential

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

Use of these Amazon Sidewalk specifications (the “Specifications”) is subject to your compliance with the
AWS Customer Agreement and the Service Terms (collectively, the “Agreement”), including all disclaimers
and limitations as to such use contained therein.

All statements, information, and data contained herein is subject to change without further notice to improve
reliability, function, or design. Certain parameters may vary in different applications and performance may
vary over time. It is your responsibility to validate that Amazon Sidewalk is suitable for your particular
device or application.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted by
this document.

Amazon Sidewalk is not intended for use in, or in association with, the operation of any hazardous environ-
ments or critical systems that may lead to serious bodily injury or death or cause environmental or property
damage, and you are solely responsible for all liability that may arise in connection with any such use.

This document is Non-Confidential.

©2023 Amazon Technologies, Inc. Amazon and all related marks are trademarks of Amazon.com, Inc. or its
affiliates.

©2023 Amazon Technologies, Inc. 2 of 47 Non-confidential

Contents

1 Scope
2 Overview of Functionality
2.1 Supported Links
2.1.1 BLE Link e
2.1.2 FSK Linko o
2.1.3 LoRaLink e
2.2 Supported Link modes
2.3 Registration and Deregistration oo oL o
2.3.1 Registration using Mobile SDK Lo
2.3.2 Registration using FFS or FFN over BLE
2.3.3 Registration using FFS or FFN over FSK
2.3.4 De-Registration L
2.4 Time Synchronization L e
2.5 Stack States L L e
2.6 Stack Status. e
2.7 Link States L e
2.7.1 BLE Link States e
2.7.2 FSK Link States
2.7.3 LoRa Link States
2.7.4 Route Selection For Downlinks L oo
2.8 MeSSages e e e e
2.8.1 Message Types o e
2.8.2 Amazon Sidewalk Message Attributes L oL oL
2.9 Stack IOCTLS o e
2.10 Stack Notifications
2.11 Stack Configuration e
2.12 Sidewalk Handle e

3 Amazon Sidewalk APIs

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

sid_init . . . e e
sid_deinit L e e
sid_start e
Sid_stop e e
SIA_ProCess e e e e
SId_pUt_MSE e e e e
sid_get_error e e e e e
sid_get_mtu. e e
sid_option L e
sid_set_factory_reset e e
sid_ble_connection_request

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

3.12 sid_set_msg_dest_id e 42
3.13 sid_get_status L 42
3.14 sid_get_time L e e e 43
4 Amazon Sidewalk Error Codes 45
Glossary 47

©2023 Amazon Technologies, Inc. 4 of 47 Non-confidential

Chapter 1
Scope

The scope of this document is to explain the usage of the Amazon Sidewalk Application Programming Inter-
face (API) for an application developer. This document does not attempt to discuss the details of Amazon
Sidewalk features and functionality. Detailed explanation of Amazon Sidewalk features and functionality is
documented by feature specific application notes, specifications, developer guides and the Amazon Sidewalk
white paper.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

©2023 Amazon Technologies, Inc. 6 of 47 Non-confidential

Chapter 2

Overview of Functionality

Amazon Sidewalk provides an Application Programming Interface API (the "Sid API") that allows Sidewalk
device creators to onboard their devices to Amazon Sidewalk, and to manage an encrypted data pipe over
BLE and sub-GHz radio interfaces.

A developer’s application interacts with the Amazon Sidewalk stack through the Sid API. The Sid API
supports the following operations for Amazon Sidewalk links:

1. Initialize and de-initialize links.
2. Start and stop links.
3. Send and receive messages.

4. Set and get configuration through IOCTLs.

2.1 Supported Links

Amazon Sidewalk supports up to three link types that can be used by devices to transport messages between
the application running on the Endpoint device and the application services interacting with AWS IoT Core
for Amazon Sidewalk. These links are enumerated in the following code, and described below.

/**

* Describes the link types supported by the Sidewalk library.

* Note: Previously SID_LINK_TYPE_BLE used here now maps to SID_LINK_TYPE_T1.
* The change is done to abstract link names from physical link types since
* more combinations are expected to be added in the future.
*/
enum SID_LINK_TYPE {

/*%x Bluetooth Low Energy link =*/

SID_LINK_TYPE_1 = 1 << 0,

/** 900 MHz link for FSK x/

SID_LINK_TYPE_2 = 1 << 1,

/*%x 900 MHz link for LoRa */

SID_LINK_TYPE_3 = 1 << 2,

/*%x Any Link Type =*/

SID_LINK_TYPE_ANY = INT_MAX,
1

enum SID_LINK_TYPE_idx {

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

/*%x Bluetooth Low Energy link =*/
SID_LINK_TYPE_1_IDX = 0,

/** 900 MHz link for FSK x/
SID_LINK_TYPE_2_IDX = 1,

/** 900 MHz link for LoRa =*/
SID_LINK_TYPE_3_IDX = 2,

/** sid max supported links x*/
SID_LINK_TYPE_MAX_IDX,

3}

2.1.1 BLE link

Amazon Sidewalk over BLE is called SID_LINK_TYPE_1. Amazon Sidewalk over BLE uses the Bluetooth
Specification v4.2+ standard to transport messages through Amazon Sidewalk enabled Amazon/Ring Gate-
ways.

The Amazon Sidewalk stack configures the BLE advertisement payload according to the use case to allow
an Amazon Sidewalk BLE Gateway to detect the Endpoint and establish a connection. The beacons are
periodically advertised by the Endpoint. The beacon advertisements switch between fast (160ms) and slow
(1s) periodicity.

After detecting a beacon from the Endpoint the Gateway establishes connection only when the Amazon
Sidewalk cloud instructs the Gateway to connect. (Note that the Amazon Sidewalk Cloud provides network
management services for Amazon Sidewalk. The operation and control of these services is not visible to the
developer.) The Gateway uses the standard BLE connection establishment procedure.

If, and only if, one of the following three conditions occurs, a BLE Gateway connects to the Endpoint:
1. The Endpoint requests time synchronization by updating the advertisement payload.
(a) The advertisement payload in the beacon is correctly received by the Gateway

(b) The advertisement payload contains information that informs the Gateway that the Endpoint is
requesting time synchronization.

2. The Endpoint requests a connection by updating the advertisement payload.

(a) If the Endpoint has data to send to the AWS IoT Core for Amazon Sidewalk, or Amazon Sidewalk
cloud services, it updates the request to the Gateway that it has data to send.

(b) The Gateway propagates this request to Amazon Sidewalk cloud services.

(¢) The Amazon Sidewalk cloud service requests the Gateway to establish an encrypted connection
with the Endpoint.

3. Amazon Sidewalk cloud services or the application on AWS IoT Core for Amazon Sidewalk has data
to send to the Endpoint.

(a) The cloud service instructs a Gateway in range of the Endpoint to establish connection with
the Endpoint to send downlink data. (An Endpoint is in range of a Gateway if the Gateway
can listen to the beacons advertised by the Endpoint and periodically forward to the Amazon
Sidewalk Cloud.)

For more details see the Amazon Sidewalk Specification.

2.1.2 FSK Link

Amazon Sidewalk over FSK is called SID_LINK_TYPE_2. Amazon Sidewalk over FSK uses a 2-GFSK modu-
lation scheme in sub-GHz spectrum.

©2023 Amazon Technologies, Inc. 8 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

If the Gateway is using FSK, it periodically transmits a beacon. The beacon is discovered by FSK capable
Endpoints to detect the presence of Amazon Sidewalk sub-GHz capable Gateways. The beacon also allows
Endpoints that are using FSK to communicate with the Gateway to synchronize and schedule uplink and
downlink messages.

For more details see the Amazon Sidewalk Specification.

2.1.3 LoRa Link

Amazon Sidewalk over LoRa is called SID_LINK_TYPE_3. Amazon Sidewalk over LoRa uses CSS in sub-GHz
spectrum. Amazon Sidewalk over LoRa is an asynchronous radio protocol and so does not use beacons.

For more details see the Amazon Sidewalk Specification.

2.2 Supported Link modes

Amazon Sidewalk supports two link modes SID_LINK_MODE_CLOUD, and SID_LINK_MODE_MOBILE.
1. SID_LINK_MODE_CLOUD is used for SID_LINK_TYPE_1, SID_LINK_TYPE_2, and SID_LINK_TYPE_3
2. SID_LINK_MODE_MOBILE is only used for link type SID_LINK_TYPE_1,(BIJE)

If a communication channel is established between an Endpoint and the Amazon Sidewalk cloud/AWS IoT
Core for Amazon Sidewalk through a Gateway, the link mode for each link is set to SID_LINK_MODE_CLOUD.

If a communication channel is established between an Endpoint and the Mobile SDK, the link mode for the
SID_LINK_TYPE_1 link is set to SID_LINK_MODE_MOBILE

A session establishment procedure is used to establish the encrypted link between an Endpoint and the
Mobile SDK.

For more details see the Amazon Sidewalk Specification.

VEXS
* Describes the link modes supported on each link type.
*
* Link mode determines the destination of the messages
* that you can send on a link.
*/
enum sid_link_mode {
/** Messages can be sent to cloud only, when a link type
* notifies support of this mode =*/
SID_LINK_MODE_CLOUD =1 << 0,
/*%x Messages can be sent to mobile only, when a link type
* notifies support of this mode =*/
SID_LINK_MODE_MOBILE = 1 << 1,
/*x Invalid mode */
SID_LINK_MODE_INVALID = INT_MAX,

3}

2.3 Registration and Deregistration

An Endpoint that is provisioned with Amazon Sidewalk certificates can use Registration to authenticate
itself as an Amazon Sidewalk Endpoint. Registration involves transfer of messages between the Endpoint
and the Amazon Sidewalk cloud services. During Registration, messages are transferred through Gateways or
through the Mobile SDK. Registration establishes the authenticity of the Endpoint to the Amazon Sidewalk

Non-confidential 9 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

cloud and also establishes the authenticity of the Amazon Sidewalk cloud to the Endpoint. Successful
registration is required before the Endpoint can access services offered by Amazon Sidewalk.

The Endpoint requires security credentials to encrypt communications with Amazon Sidewalk Cloud services,
and with AWS IoT Core for Amazon Sidewalk. During the registration process the security credentials are
stored in the Endpoint’s non-volatile storage.

Messages exchanged between the Endpoint and the AWS IoT application are encrypted with two keys: the
Application server key and the Network server key.

The Application server key is derived during registration with AWS IoT Core for Amazon Sidewalk. The
Network server key is derived during registration between the Endpoint and the Amazon Sidewalk cloud
service.

User payloads are secured using two levels of encryption:

1. The Application server key is used with the AES-CTR encryption scheme, to encrypt the User’s
payload.

2. The Network server key is used with the AES-GCM and AES-CTR encryption scheme, as a second
layer of encryption on the payload.

Internal messages between the Amazon Sidewalk stack and cloud services are only encrypted with the
Network server key. For more details on security refer to the Amazon Sidewalk white paper.

Endpoint registration is only supported on SID_LINK_TYPE_2 (FSK) and SID_LINK_TYPE_1 (BLE). Endpoints
cannot register with Amazon Sidewalk using SID_LINK_TYPE_3 (LoRa). Please note that only consent-enabled
Amazon Sidewalk Gateways can be used to register Endpoints. There is no explicit API call to the Amazon
Sidewalk stack to start the process of registration over SID_LINK_TYPE_2 or SID_LINK_TYPE_1.

The Amazon Sidewalk stack automatically detects the registration status and triggers the registration pro-
cedure with the Amazon Sidewalk cloud services if the following conditions are met:

1. The Amazon Sidewalk stack is initialized.
2. The link is started.
3. The Endpoint is not already registered.
The APIs to initialize and start the links are described below.
The Amazon Sidewalk stack exposes an API to de-register through the factory reset API, see section 2.3.4.

Registration uses one of three procedures described below.

2.3.1 Registration using Mobile SDK

The Sidewalk Mobile SDK allows a developer to integrate endpoint registration and de-registration controls
into the developer’s own mobile application. (The Sidewalk Mobile SDK also supports a connection to an
Endpoint to directly transmit and receive packets.)

The Endpoint uses SID_LINK_TYPE_1 (BLE) to register, and the Mobile SDK uses the phone’s BLE to
communicate with the Endpoint.

During registration the Endpoint communicates with a mobile app that uses the Amazon Sidewalk Mobile
SDK. The Mobile SDK handles the interaction between the Sidewalk cloud and the edge device, exchanging
keys and registering the edge device, so that the edge device can then connect to the Amazon Sidewalk via
Amazon Sidewalk gateways.

1. The Endpoint’s beacons communicate its pre-registered state to the Gateway.
2. The Mobile SDK connects to the Endpoint.

3. The Mobile SDK triggers the registration sequence.

©2023 Amazon Technologies, Inc. 10 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

4. The registration sequence completes.

For more details see the Mobile SDK Developer Guide.

2.3.2 Registration using FFS or FFN over BLE

Registration using FFS/FFN (Frustration Free Setup/Frustration Free Networking) over BLE requires
SID_LINK_TYPE_1 (BLE).

The Endpoint uses SID_LINK_TYPE_1 to register. During registration the Endpoint communicates with an
Amazon Sidewalk enabled BLE Gateway. Registration proceeds as follows:

1. The Endpoint’s beacons communicate its pre-registered state to the Gateway.
2. The Gateway is instructed by Amazon Sidewalk cloud services to connect to the Endpoint.
3. The Gateway triggers the registration sequence.

4. The registration sequence completes.

2.3.3 Registration using FFS or FFN over FSK
Registration using FFS/FFN over FSK requires SID_LINK_TYPE_2 (FSK)

The Endpoint uses SID_LINK_TYPE_2 to register. During registration the Endpoint communicates an Amazon
Sidewalk enabled FSK Gateway. Registration proceeds as follows:

1. The Endpoint scans for Amazon Sidewalk FSK beacons.

2. The Endpoint synchronizes to a beacon from a Gateway that has Amazon Sidewalk consent enabled.
3. The Endpoint triggers the registration sequence.

4. The registration sequence completes.

Please note that in case of FSK, it is the Endpoint that starts the registration sequence while in the case of
BLE, the registration is started by the Amazon Sidewalk cloud services through an Amazon Sidewalk BLE
Gateway

2.3.4 De-Registration

The Endpoint can be de-registered from Amazon Sidewalk. The de-registration process involves deletion of
security keys and configuration parameters from the Endpoint’s non-volatile storage. De-registration of an
Endpoint uses one of three procedures described below.

1. Endpoint application initiated: the Sid API exposes the factory reset API. Calling this API de-
registers the Endpoint from Amazon Sidewalk. The on factory reset callback notifies the developer’s
application of the status of de-registration by the Amazon Sidewalk stack. Note that calling this
API changes the device’s registered state to ready for registration. If the Amazon Sidewalk stack is
not stopped or de-initialized, the Endpoint can start the process of registration immediately through
FFS/FFN through an Amazon Sidewalk Gateway or through a mobile app that has Amazon Sidewalk
Mobile SDK support.

2. AWS IoT application service initiated: The AWS IoT application can de-register the device
by issuing a factory reset command to the Amazon Sidewalk stack running on the Endpoint. The on
factory reset callback notifies the developer’s Endpoint application that the Endpoint is de-registered
from Amazon Sidewalk.

3. Initiated via Mobile SDK: The Mobile SDK exposes an API for the core application to trigger
Amazon Sidewalk Endpoint de-registration.

Non-confidential 11 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

(a) When the Mobile SDK triggers a request to de-register the Endpoint, The Amazon Sidewalk
cloud sends a Factory Reset command which shall be routed via an Amazon Sidewalk Gateway
OR the Mobile SDK. The routing choice for a factory reset command is based on the range of the
Endpoint to the mobile.

(b) When the Endpoint is in range of the Mobile SDK, the de-registration process is simplified because
the Mobile SDK has already established a direct communication path to the Endpoint to de-
register. Using the Mobile SDK to inject a factory reset command is also useful if the developer’s
application triggers the deregistration procedure when the Endpoint is not in range of an Amazon
Sidewalk gateway.

VEXS
* Describes the Registration status of the Sidewalk library.
*/
enum sid_registration_status {
/*x Used to indicate Sidewalk library is registered with
* Sidewalk cloud services */
SID_STATUS_REGISTERED = @,
/*%x Used to indicate Sidewalk library is not registered
* with Sidewalk cloud services =*/
SID_STATUS_NOT_REGISTERED = 1,

3+

2.4 Time Synchronization

The Amazon Sidewalk stack uses GPS time as a common frame of reference between Endpoints and the
Amazon Sidewalk cloud service. The GPS time is used for encryption, and for derivation of the keys used
to encrypt messages exchanged between Endpoints and Amazon Sidewalk services. A device has to be in
the registered state to request time from the Amazon Sidewalk cloud service. After device registration is
complete, or after the device resets in the registered state, the Amazon Sidewalk stack requests GPS time
from the Amazon Sidewalk service. The time sync request process is described below:

1. Time sync on SID_LINK_TYPE_1 (BLE)
(a) The Endpoint updates the advertisement payload on the beacon requesting time.
(b)
(¢) The cloud service authenticates the Endpoint using its beacon payload.
)

(d

Any BLE Gateway in range of the Endpoint forwards the request to the cloud service.

If authentication succeeds, the cloud service instructs the BLE Gateway through which the beacon
was received to connect to the Endpoint and provide the time.

(e) The BLE Gateway connects to the Endpoint.

(f) The Amazon Sidewalk cloud service provides the time through the BLE Gateway. (The Endpoint
does not need to send a time sync request message.)

2. Time sync on SID_LINK_TYPE_2 (FSK)
(a) The Endpoint synchronizes to the beacon.

(b) The Endpoint sends a time sync request message to the Amazon Sidewalk service through the
FSK enabled Gateway.

(¢) The Amazon Sidewalk cloud authenticates the request.

(d) If authentication succeeds, the cloud service sends a time sync response message to the Endpoint.
This message contains the GPS time.

©2023 Amazon Technologies, Inc. 12 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

(e) The EP authenticates the time sync response message.
(f) If authentication succeeds, the Endpoint accepts the GPS time from the message.
3. Time sync on SID_LINK_TYPE_3 (LoRa)

(a) The time sync request message is sent by the Endpoint to the Amazon Sidewalk service through
the LoRa enabled Amazon Sidewalk Gateway. The time sync request is sent soon after reset.
The Sidewalk cloud authenticates the request and provides time to the Endpoint in the time sync
response message. The Endpoint authenticates the time sync response message before accepting
the time from the message.

To compensate for clock drift, the Endpoint periodically requests updated GPS time from the Amazon
Sidewalk service. The periodicity is dependent on the device tolerance to clock drift and is the same for all
of the device’s links. The default time sync periodic setting is two hours.

When the Amazon Sidewalk stack is in time synced state, the developer’s application can get the GPS time
by querying the stack. The Amazon Sidewalk stack does not provide UTC or local time.

/**

* Describes the Time synchronization status of the Sidewalk
library with the cloud services.

Sidewalk security relies on the synchronization of time
between the cloud services and the end device.

@note Sidewalk library can have time synchronization with
cloud service only when the device is registered

b R

*

*/

enum sid_time_sync_status {
/*%x Used to indicate Sidewalk library is registered with
* Sidewalk cloud services =*/
SID_STATUS_TIME_SYNCED = 0,
/*x Used to indicate Sidewalk library is not time synchronized
* with cloud services =*/
SID_STATUS_NO_TIME = 1,

Option to get current time.

GPS time is the time in milliseconds since 6/1/1980. GPS time is not
adjusted by leap seconds. UTC time is the number of milliseconds since
1/1/1970. Local time is the adjusted time taking timezone into
consideration.

¥ % % X % % %

*/

enum sid_time_format {
/** Option to get current gps time */
SID_GET_GPS_TIME = 0,
/*%x Option to get current utc time. NOT SUPPORTED at this time =*/
SID_GET_UTC_TIME = 1,
/** Option to get current local time. NOT SUPPORTED at this time =*/
SID_GET_LOCAL_TIME = 2,

};

Non-confidential 13 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

2.5 Stack States

The Amazon Sidewalk stack state of an Endpoint can be queried through a Sid API. The Amazon Sidewalk
stack state is ready only when the Endpoint is registered, time is synced and at least one of the links is
connected. The developer’s application can only send and receive messages when the Amazon Sidewalk stack
is in ready state. For the Amazon Sidewalk stack states see table 2.1.

Sidewalk link status

State Type Value
Boolean | Endpoint’s registration status
Sidewalk registration state TRUE = registered
FALSE = not registered
Boolean | Endpoint’s time sync status
Sidewalk time sync state TRUE = Endpoint has time sync
FALSE = Endpoint does not have time sync
Boolean | Amazon Sidewalk link connection status (per link type)

TRUE = Endpoint is connected
FALSE = Endpoint is not connected

Table 2.1: Amazon Sidewalk stack states.

/**

* Describes the state of the Sidewalk library.

*/
enum sid_state {

/*%x Used when the Sidewalk library is ready to
* send and receive messages */

SID_STATE_READY = 0,

/*x Used when the Sidewalk library is

* messages, such as when the device is not registered
* or link gets disconnected or time is not synced =*/

SID_STATE_NOT_READY =

1,

/*%x Used when the Sidewalk library encountered an error.
* Use sid_get_error() for a diagnostic

* error code */
SID_STATE_ERROR = 2,

unable to send or receive

/*%x Used when the Sidewalk library is ready to send and receive

* messages only with secure channel establishment completed

* but device is not registered and time is not synced x/
SID_STATE_SECURE_CHANNEL_READY = 3,

3}

2.6 Stack Status

The Amazon Sidewalk stack status contains: registration state, time synchronization state, link connection
states for each link, and link modes supported for each link.

For registration and time synchronization states see section 2.5.

The link_status mask holds the connection status of all the links supported by Amazon Sidewalk. The
following code defines the link_status mask values. Note that concurrent FSK and LoRa is not supported.

// All links are in disconnected state

link_status_mask = 0;

©2023 Amazon Technologies, Inc.

14 of 47

Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

// Only BLE link is connected
link_status_mask = 1; // (link_status_mask & SID_LINK_TYPE_1 == 1)

// Only FSK link is connected
link_status_mask = 2; // (link_status_mask & SID_LINK_TYPE_2 == 1)

// Only LoRa link is connected
link_status_mask = 4; // (link_status_mask & SID_LINK_TYPE_2 == 1)

// BLE and FSK link is connected
link_status_mask = 3; // (link_status_mask & SID_LINK_TYPE_1 == 1
// and link_status_mask & SID_LINK_TYPE_2 == 1)

// BLE and LoRa link is connected
link_status_mask = 5; // (link_status_mask & SID_LINK_TYPE_1 == 1
// and link_status_mask & SID_LINK_TYPE_3 == 1)

The supported link modes is an array giving the connection mode for each link. Entries in the supported
link modes array are accessed using the link type index.

/**
* Describes the link connection status with the gateway device
*
*/
struct sid_status_detail {
/%%
* Used to indicate which link is up, if the bit corresponding to a link
is set it is up otherwise it is down.
For example to check if SID_LINK_TYPE_1 is up,
''(link_status_mask & SID_LINK_TYPE_1) needs to be true

supported link modes indicate the modes supported by each link.
A link type may support more than one mode simultaneously

X % % % % X%

*

*/

enum sid_registration_status registration_status;

enum sid_time_sync_status time_sync_status;

uint32_t link_status_mask;

uint32_t supported_link_modes[SID_LINK_TYPE_MAX_IDX];
1

2.7 Link States

The connection establishment and maintenance of the established connection is different for each of the link
types supported by Amazon Sidewalk, and is described below.

2.7.1 BLE Link States

When the Endpoint has messages to send to AWS IoT Core for Amazon Sidewalk, the Endpoint updates its
beacon’s advertisement payload to request a connection. If there is an Amazon Sidewalk BLE Gateway in
range, the gateway establishes a connection. For details of connection establishment see section 2.1.1

The Endpoint’s Amazon Sidewalk stack maintains the connection with the Amazon Sidewalk BLE Gateway
only when there is uplink or downlink traffic. If the Endpoint does not transmit uplink traffic to the

Non-confidential 15 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

gateway, or receive downlink traffic from the Gateway for a period of 30 s, the Endpoint’s stack terminates
the connection with the Amazon Sidewalk BLE Gateway and the developer’s application is notified. To
re-connect, the developer’s application again requests the Amazon Sidewalk stack to updates its beacon’s
advertisement payload to request a connection.

The developer’s application can prevent the Amazon Sidewalk stack from terminating the connection by
sending at least one uplink message to AWS IoT Core for Amazon Sidewalk every 30 seconds, or if at least
one downlink message is received by the Endpoint every 30 seconds the connection is maintained by the
Amazon Sidewalk stack.

When the Endpoint on a BLE link does not have time synchronization, the Amazon Sidewalk stack updates
the beacon’s payload requesting time sync. This is handled automatically by the Amazon Sidewalk stack.
When the Endpoint does not have time synchronization, the developer’s application is notified of the time
acquisition status and the developer’s application cannot send or receive messages until GPS time is acquired.

2.7.2 FSK Link States

The connection establishment procedure for an Amazon Sidewalk FSK Gateway starts with the Endpoint
synchronizing with an FSK Gateway’s beacon that has consent enabled.

When the beacon is synchronized, the Endpoint developer’s application is notified that the link is connected.

If the Endpoint does not have GPS time, the Amazon Sidewalk stack sends a time request on the FSK
Gateway’s beacon synchronization event.

If the Endpoint has not acquired time synchronization, the developer’s application cannot send or receive
messages.

When the Endpoint has acquired GPS time, the developer is notified of the successful time acquisition status
and the link connection status, and the developer’s application can send and receive messages.

After time synchronization, the Amazon Sidewalk stack sends a join request message to the Amazon Sidewalk
cloud. The configuration of the device profile settings configuration determines the following:

1. The parameters that are sent in the join request.
2. The downlink schedules of the Endpoint.

See the Amazon Sidewalk Sub-GHz Device Profiles Application Note for more details.

2.7.3 LoRa Link States

The LoRa link does not establish a connection with an Amazon Sidewalk LoRa Gateway (the link between
the Endpoint and the Gateway is asynchronous and connectionless). After the link is initialized and started,
the developer’s application is notified that the link is connected.

If the Endpoint does not have GPS time, the time acquisition process is triggered and the developer’s
application cannot send or receive messages until the Endpoint acquires GPS time on the LoRa link.

When GPS time is acquired, the developer’s application is notified of the time acquisition status. When
GPS time is acquired on the LoRa link, the developer’s application can send uplink messages on the LoRa
link.

When the Endpoint has acquired GPS time, the Amazon Sidewalk stack sends a join request to the Amazon
Sidewalk cloud.

The configuration of the device profile settings configuration determines the following;:
1. The parameters that are sent in the join request.
2. The downlink schedules of the Endpoint.

3. In some cases, the requirements on the Endpoint to send periodic uplinks.

©2023 Amazon Technologies, Inc. 16 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

See the Amazon Sidewalk Sub-GHz Device Profiles Application Note for more details.

2.7.4 Route Selection For Downlinks

The last uplink message affects how Amazon Sidewalk processes downlink messages. Cloud services send
any pending downlink packets using the link on which the Endpoint last sent an uplink packet.

For BLE, if there is no active link, downlink packets for an Endpoint are sent to the BLE Gateway that last
received a beacon from that Endpoint.

For FSK, downlink packets for an Endpoint are sent to the FSK Gateway that last received an uplink
message from that Endpoint.

For LoRa, downlink packets for an Endpoint are sent to the LoRa Gateway that last received an uplink
message from that Endpoint.

If BLE beacons and uplinks from FSK or LoRa reach the cloud simultaneously, BLE is the preferred link
for the downlink transmission.

2.8 Messages

The Amazon Sidewalk stack provides APIs to send messages to AWS IoT and notifies the developer’s
application of messages received from AWS IoT Core for Amazon Sidewalk.

Each Amazon Sidewalk message is associated with metadata that uniquely identifies the message. The
metadata in a message also notifies the Amazon Sidewalk stack of the attributes that are to be applied to
each message.

Amazon Sidewalk messages are agnostic to the link on which the messages are being sent. The only varying
factor is the MTU of the link. The message types and attributes of messages are the same irrespective of
the link the message is being sent on.

For the MTU of the links supported by Amazon Sidewalk see table 2.2.

Link Type MTU (Bytes)
BLE(link type 1) | 255
FSK(link type 2) | 200
LoRa(link type 3) | 19

Table 2.2: MTU of Amazon Sidewalk links.

The message consists of msg and msg_desc data structures. The msg data structure has size and a pointer
to the payload of the message. The msg_desc data structure has message attributes which are described in
detail below:

union sid_msg_desc_attributes {
/*%x Attributes that are applied only when message is
* transmitted, see #sid_put_msg x/
struct sid_msg_desc_tx_attributes tx_attr;
/** Attributes reported per message when the message is
* reported to the developer’s application, see #on_msg_received */
struct sid_msg_desc_rx_attributes rx_attr;
1
struct sid_msg_desc {
/** The link type on which this message is to be sent
* or was received from =*/
uint32_t link_type;

Non-confidential 17 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

/*%x The message type */
enum sid_msg_type type;
/** The link mode on which message is sent or received x/
enum sid_link_mode link_mode;
/*%x The id associated with a message, generated by the
* Sidewalk library
* The maximum value the id can take is Ox3FFF after
* which the id resets% to
*/
uintl6_t id;
/*%x Attributes applied to the message */
union sid_msg_desc_attributes msg_desc_attr;
1
/**
* Describes a message payload.
*/
struct sid_msg {
void =*xdata;
size_t size;

}s

2.8.1 Message Types

Sid API supports four types of messages. The same message types are available to the application on AWS
IoT Core for Amazon Sidewalk. When messages are exchanged between the Endpoint and AWS IoT Core
for Amazon Sidewalk, the message type is also notified.

The four message types are as follows:

1. GET to retrieve some data from destination. This message type elicits a mandatory response from the
receiver.

2. SET requests to write some data on destined devices. These requests can be used to update feature
configuration or trigger an operation on device.

3. RESP type messages are sent in response to GET, SET or NOTIFY. RESP messages are an empty acknowl-
edgement, and shall not contain any payload data. The RESP messages are sent in response only when
there is an explicit request from the message sender

4. NOTIFY messages are sent by a device or application. NOTIFY messages do not correspond to any
preceding requests.

When the APT to send a message is called, the Amazon Sidewalk stack generates a unique ID. This unique
ID is the message ID. The developer’s application is expected to store this message ID to compare with the
corresponding message ID returned in a send status event or in an acknowledgement from the AWS IoT
Core for Amazon Sidewalk. The stack generates a unique message ID for all message types except RESP. For
message type RESP, the stack expects the message ID to be provided by the developer’s application.

There is no restriction on the use of a message type in a different manner than what is documented
above except for message type RESP. For example the message type GET can be used to trigger an operation
on a device or NOTIFY can be used by the developer’s application to get some data from destination.

VEXS

* The Sidewalk library message types.

The messages from cloud services to the End device are designated as
"Downlink Messages”

The messages from End device to Cloud services are designated as
"Uplink Messages"”

* % % %

©2023 Amazon Technologies, Inc. 18 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

*/

enum sid_msg_type {
/**% #SID_MSG_TYPE_GET is used by the sender to retrieve information from
* the receiver, the sender

* expects a mandatory response from the receiver. On reception of

* SID_MSG_TYPE_GET, the receiver is expected to send a message with type
* #SID_MSG_TYPE_RESPONSE with the same message id it received from the

* message type #SID_MSG_TYPE_GET.

* This is to ensure the sender can map message type #SID_MSG_TYPE_GET

* with the received #SID_MSG_TYPE_RESPONSE.

* Both uplink and downlink messages use this message type.

* @see sid_put_msg().

* @see on_msg_received in #sid_event_callbacks.

*/

SID_MSG_TYPE_GET = 0,

/** #SID_MSG_TYPE_SET indicates that the sender is expecting the receiver
* to take an action on receiving the message and the sender does not
* expect a response.

* #SID_MSG_TYPE_SET type is used typically by Cloud services to trigger
* an action to be preformed by the End device.

* Typical users for this message type are downlink messages.

*/

SID_MSG_TYPE_SET = 1,

/**% #SID_MSG_TYPE_NOTIFY is used to notify cloud services of any periodic
* events or events triggered/originated from the device. Cloud services
* do not typically use #SID_MSG_TYPE_NOTIFY as the nature of messages
* from cloud services to the devices are explicit commands instead of
* notifications.

* Typical users for this message type are uplink messages.

*/

SID_MSG_TYPE_NOTIFY = 2,

/** #SID_MSG_TYPE_RESPONSE is sent as a response to the message of type

* #SID_MSG_TYPE_GET.

* The sender of #SID_MSG_TYPE_RESPONSE is required to the copy the
* message id received in the message of type #SID_MSG_TYPE_GET.

* Both uplink and downlink messages use this message type.

* @see sid_put_msg().

* @see on_msg_received in #sid_event_callbacks.
*/
SID_MSG_TYPE_RESPONSE = 3,

};

2.8.2 Amazon Sidewalk Message Attributes

When sending a message, the message attributes can be used to modify each message’s behavior. When
receiving a message, the Amazon Sidewalk stack uses the received message attributes to notify the developer’s
application of the attributes AWS IoT Core for Amazon Sidewalk has configured for the message.

2.8.2.1 Sidewalk Message Transmit Attributes

The Amazon Sidewalk stack notifies the status of the message sent over the air by configured link and also
the status of message received by the AWS IoT Core for Amazon Sidewalk based on the transmit attributes
configured on every message. The status of the message whether received by AWS IoT Core for Amazon
Sidewalk is reported to the developer’s application only when Transport Ack is requested by the developer’s

Non-confidential 19 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

application.
For each message, the Amazon Sidewalk stack performs retries based on the Number of Retries configuration.

The developer’s application can configure the following attributes of the message that is to be sent by the
Amazon Sidewalk stack:

1. Request Acknowledgment from AWS IoT: When this configuration is set to true, the Amazon Sidewalk
stack requests AWS ITo Core for Amazon Sidewalk to send an Acknowledgment when AWS IoT Core
for Amazon Sidewalk receives the message. Note that the acknowledgment is sent by AWS IoT Core
for Amazon Sidewalk, and not by the developer’s AWS IoT application. This is configured with
Transport Ack set to TRUE. Acknowledgements are sent using messages with message type RESP and
zero size payload.

2. Number of Retries This requires Transport Ack set to TRUE. When set to TRUE, AWS IoT Core for
Amazon Sidewalk sends an Acknowledgment back to the Amazon Sidewalk stack. If the Acknowledg-
ment is not received, the Amazon Sidewalk stack retries the message the number of times configured in
Number of Retries. If there is no Acknowledgement received after Number of Retries transmissions,
then the Amazon Sidewalk stack sends a failure to send status report to the developer’s application.

3. Time to Live: The time in milliseconds that the Amazon Sidewalk stack holds the message in its
queue before reporting to the developer’s application the failure to receive the acknowledgment from
AWS ToT.

Please note that the retry periodicity is derived from Number of Retries and Time to Live configuration.
Retry periodicity = Time to Live / Number of Retries

/** Attributes applied to the message descriptor on tx */
struct sid_msg_desc_tx_attributes {
/**x Whether this message requests an ack from the AWS IOT service */
bool request_ack;
/*x Number of retries the Sidewalk stack needs to preform in case the
* ack is not received. Setting not applicable if request_ack is set
* to false
*/
uint8_t num_retries;
/*%x Total time the Sidewalk stack holds the message in its queue in case
* the ack is not received. Setting not applicable if request_ack is set
* to false
*/
uint16_t ttl_in_seconds;

2.8.2.2 Message Receive Attributes

Each message received by the Amazon Sidewalk stack is notified to the developer’s application using the
on msg received callback registered by the developer’s application. The following are the received message
attributes reported on every Amazon Sidewalk message:

1. Acknowledgement: The received message is an acknowledgement from the AWS IoT Core for Amazon
Sidewalk that it has received the message sent by the Endpoint.

2. Duplicate: The received message is a duplicate. The Amazon Sidewalk stack keeps track of the last
10 messages received from AWS IoT Core for Amazon Sidewalk and either reports or filters duplicates.
The choice to report or filter can be configured, see section 2.9. A duplicate is a message that has
the same message ID and payload size as a message that has already been reported to the developer’s
application.

©2023 Amazon Technologies, Inc. 20 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

3. Acknowledgement Request: The AWS IoT application can request acknowledgment from the device
when sending messages to the device. The Amazon Sidewalk stack reports the status that AWS IoT
Core for Amazon Sidewalk requested in an acknowledgement for a message. The Amazon Sidewalk
stack responds to AWS IoT Core for Amazon Sidewalk immediately with an Acknowledgment and
then reports the message to the developer’s application with the acknowledgment request set to TRUE.
When the developer’s application receives the message with acknowledgment set to TRUE, the Amazon
Sidewalk stack had already queued the Acknowledgment to AWS IoT Core for Amazon Sidewalk.

4. rssi: the received signal strength at which the message is received by the link’s radio.
5. snr: the signal to noise ratio reported by the radio on this message.

/** Attributes with which the message is received =*/
struct sid_msg_desc_rx_attributes {

/*%x Whether the message received is an acknowledgement. Acknowledgements
* have the same message id as that of message sent but with zero payload
* size. See #sid_msg_desc_tx_attributes
*/

bool is_msg_ack;

/*x Whether the message received is a duplicate. If a message arrives at
* the Sidewalk stack with message id and payload size equal to an
* already reported message, this message is marked as a duplicate
* See #SID_OPTION_SET_MSG_POLICY_FILTER_DUPLICATES
*/

bool is_msg_duplicate;

/*%x Whether the message received has requested an acknowledgement to be
* sent, Acknowledgements have the same message id as that of the
* received message. Sidewalk stack immediately queues an
* acknowledgement to the sender before propagating this message to the
* developer’s application*/

bool ack_requested;

/*%x rssi of the received message */

int8_t rssi;

/**% snr of the received message */

int8_t snr;

2.9 Stack IOCTLs

The Sid API allows the developer’s application to modify certain aspects of the Amazon Sidewalk stack’s
behavior through IOCTLs. The following IOCTLs are available for the developer’s application to configure:

1. Set BLE Battery level: The battery level is advertised in the beacon payload. The developer’s
application can use this IOCTL to set the current battery level as a percentage. The default value is
75%. The developer’s application should update the Amazon Sidewalk stack battery level, so that an
accurate value is advertised in the BLE beacon. This IOCTL does not play any role in FSK and LoRa
links.

2. Set Device Profile: This IOCTL is valid only for FSK and LoRa and does not apply for BLE. The
default profile setting for FSK is Profile 1 and for LoRa it is Profile B. For more details on FSK and
LoRa device profiles, see Amazon Sidewalk Sub-GHz Device Profiles Application Note.

3. Get Device Profile: Get the device’s current operating profile. See Amazon Sidewalk Sub-GHz Device
Profiles Application Note.

4. Set filter duplicates: The Amazon Sidewalk stack can filter or report duplicate messages. This
setting allows the developer’s application to modify the stack behavior to filter or to report the duplicate

Non-confidential 21 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

/**

messages. The default setting is @, to filter duplicates. When set to 1, the Amazon Sidewalk stack
reports the duplicates using the on msg received callback with the is_msg_duplicate set to 1 in the
metadata of the message.

5. Get filter duplicates: Get the current setting of filter duplicates.

* The set of options to be used with sid_option API.

*x/

enum sid_option {

3

/*%x Option to configure the advertised battery level.

* Value is a uint8_t, 0-100 =x/

SID_OPTION_BLE_BATTERY_LEVEL = @,

/** Option to configure the device profile.

* Value is of type struct sid_device_profile =/
SID_OPTION_900OMHZ_SET_DEVICE_PROFILE = 1,

/*%x Option to get the device profile configuration.

* Value is of type struct sid_device_profile %/
SID_OPTION_900OMHZ_GET_DEVICE_PROFILE = 2,

/** Option to set the message policy to filter duplicates.

* Value is © or 1, when set to @0, the default setting,

* duplicates are filtered and are not propagated using #on_msg_received,
* when set to 1, duplicates are detected and are propagated using
* #on_msg_receive, see #sid_msg_desc_rx_attributes =x/
SID_OPTION_SET_MSG_POLICY_FILTER_DUPLICATES = 3,

/*x Option to get the configured policy of filtering duplicates,

* @ - Filter duplicates, 1 - Allow duplicates =*/
SID_OPTION_GET_MSG_POLICY_FILTER_DUPLICATES = 4,

/** Delimiter to enum sid_option*/

SID_OPTION_LAST,

2.10 Stack Notifications

The Sid API notifies the developer’s application through a set of callbacks. The developer is required to
register these calllbacks with the Sid API when initializing the Amazon Sidewalk stack. The following events
are notified by the Amazon Sidewalk stack:

1. on event: the stack does not create tasks for processing its internal events. The stack processes its

internal events in the context supplied by the developer’s application. In order to process its pending
internal events, the stack notifies the developer’s application through the on event callback. On getting
the on event callback, the developer’s application is required to call the sid_process API to cause
the stack to process the pending events. The on event callback can be called in ISR context, and the
arguments in the callback indicate whether the on event callback is being called in an ISR context or
not.

. on msg received: The stack uses this callback to notify the developer’s application that a message has

arrived. The on msg received callback is always called in the context in which sid_process is called.

. on msg sent: When the stack sends the message over the desired link, the stack notifies the developer’s

application that it has sent the message successfully using the on msg sent callback. Note that the on
msg sent callback does not indicate the message has been received by the AWS IoT application. The
on msg sent callback only indicates that the message has been sent over the link successfully and no
over the air transmission errors have occurred. The notification trigger for the on msg sent callback to
the developer’s application by the stack is different for each link type that is used to send the message:

©2023 Amazon Technologies, Inc. 22 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

(a) BLE: on a BLE link, when the BLE Endpoint receives an acknowledgement from a BLE Gateway,
the on msg sent callback is called.

(b) FSK: on an FSK link, when the FSK Endpoint receives a link layer acknowledgement from an
FSK Gateway, the on msg sent callback is called.

(c) LoRa: on a LoRa link, there is no link layer acknowledgement, and the on msg sent callback
is called as soon as the message is transferred over the air by the low level LoRa radio driver.

4. on send error: The on send error message is sent if the stack cannot send the message for any of
the following reasons.

(a) Link is not connected: If the link on which the message is being sent is disconnected, the on
send error callback is called.

(b) AWS IoT Core for Amazon Sidewalk has not sent Acknowledgement: If the message requires a
Transport Ack from AWS IoT Core for Amazon Sidewalk and the Transport Ack was not received
in the configured Time to live period, the on send error callback is called.

Note that on msg sent and on send error are not mutually exclusive. There could be instances where the
message could be sent over the air to the Gateway, but the message might not make it to the destination
of AWS IoT Core for Amazon Sidewalk. In this scenario, on send error and on msg sent are called with
the same message ID. This indicates that even though the message was able to be sent over the air to the
Gateway, the message did not reach AWS IoT Core for Amazon Sidewalk within the Time to live period
configured for that message.

1. on status changed: The on status changed callback is called when the Sidewalk state changes. The
Sidewalk state is comprised of the following as explained in the previous sections.

(a) Connection status of the link
(b) Time sync status
(¢) Registration status
When any of these items change status, the on status changed callback is called.

1. on factory reset This callback is called when the AWS IoT application has de-registered the device.
The Amazon Sidewalk stack removes all the non-volatile data stored during registration, and then uses
the on factory reset callback to notify the developer’s application that the Endpoint is de-registered
from the Amazon Sidewalk.

/**

* The set of callbacks a developer’s application can register through

* sid_init ().

*/

struct sid_event_callbacks {
/*% A place where you can store data for the developer’s application =*/
void *context;
/**

*

Callback to invoke when any Sidewalk event occurs.

The Sidewalk library invokes this callback when there is at least one
event to process, including internal events. Upon receiving this
callback you are required to schedule a call to sid_process() within
your main loop or running context.

@warning sid_process() MUST NOT be called from within the
#on_event callback to avoid re-entrancy and recursion problems.

X % % X X X X X X%

Non-confidential 23 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

@see sid_process

@param[in] in_isr true if invoked from within an ISR context,
false otherwise.

@param[in] context The context pointer given in

* sid_event_callbacks.context

*/

void (*on_event)(bool in_isr, void *context);

/%%

b S T

Callback to invoke when a message from Sidewalk is received.

* @warning sid_put_msg() MUST NOT be called from within the

* #on_msg_received callback to avoid re-entrancy and recursion problems.
*

* @param[in] msg_desc A pointer to the received message descriptor, which
* is never NULL.

* @param[in] msg A pointer to the received message payload, which is
* never NULL.

* @param[in] context The context pointer given in

* sid_event_callbacks.context

*/

void (*on_msg_received)(const struct sid_msg_desc *msg_desc,
const struct sid_msg *msg, void *context);

/ k%
* Callback to invoke when a message was successfully delivered to
* Sidewalk.
*
* @param[in] msg_desc A pointer to the sent message descriptor,
* which is never NULL.
* @param[in] context The context pointer given in

* sid_event_callbacks.context

*/

void (*on_msg_sent)(const struct sid_msg_desc *msg_desc, void *context);
VEES

*

Callback to invoke when a queued message failed to be delivered to
Sidewalk.

A developer’s application can use this notification to schedule
retrying sending a message, or invoke other error handling.

@see sid_put_msg

@warning sid_put_msg() MUST NOT be called from within the
#on_send_error callback to avoid re-entrancy and recursion problems.

@param[in] error The error code associated with the failure
@param[in] msg_desc A pointer to the unsent message descriptor,
which is never NULL.

@param[in] context The context pointer given in
sid_event_callbacks.context

X% % % X X X X X %X %X % % %

*

*/

void (*on_send_error)(sid_error_t error,
const struct sid_msg_desc *msg_desc,
void *context);

©2023 Amazon Technologies, Inc. 24 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

VEES
Callback to invoke when the Sidewalk library status changes.

Once sid_start() is called, a #SID_STATE_READY status indicates
the library is ready to accept messages sid_put_msg().

When receiving #SID_STATE_ERROR, you can call sid_get_error() from
within the #on_status_changed callback context to obtain more detail
about the error condition.

Receiving this status means the Sidewalk library encountered a fatal
condition and won’t be able to proceed. Hence, this notification is
mostly for diagnostic purposes.

@param[in] status The current status, valid until the next invocation
of this callback.
@param[in] context The context pointer given in

X% % X X X %X %X %X % % X X X X%

* sid_event_callbacks.context

*/

void (*on_status_changed)(const struct sid_status *status, void *context);
/%%

* Callback to invoke when the Sidewalk library receives a factory reset
* from the cloud service.

*

* On receiving the factory reset from the cloud service, the Sidewalk

* library clears its configuration from the non volatile storage and

* reset its state accordingly.

* The Sidewalk link status resets to #SID_STATE_DISABLED.

* This callback is then called by the Sidewalk library to notify you to
* handle the factory reset command

*

* The device needs to successfully complete device registration with the
* cloud services for the Sidewalk library to send and receive messages

*

* @param[in] context The context pointer given in

* sid_event_callbacks.context

*/

void (*on_factory_reset)(void *context);

};

2.11 Stack Configuration

The Amazon Sidewalk stack requires configuration to be passed during initialization. Configuration includes
the following items:

1. link_mask: The Amazon Sidewalk stack can be initialized to operate as one link or a combination of
more than one link. The link_mask is a bit mask that allows the developer’s application to specify a
single link or a combination of more than one link. The following code shows the link combinations
that are currently supported and the value the 1ink_mask takes for these combinations. FSK and LoRa
links are mutually exclusive, and the Amazon Sidewalk stack cannot support these links simultaneously.
The developer’s application has to de-initialize and re-initialize the Amazon Sidewalk stack to switch
between FSK and LoRa links.

// BLE only
uint32_t link_mask = (1 << SID_LINK_TYPE_1) ; // link_mask = 1;

Non-confidential 25 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

// FSK only
uint32_t link_mask = (1 << SID_LINK_TYPE_2) ; // link_mask = 2;
// LoRa only
uint32_t link_mask = (1 << SID_LINK_TYPE_3) ; // link_mask = 4;
// BLE and LoRa
uint32_t link_mask = (1 << SID_LINK_TYPE_1)

| (1 << SID_LINK_TYPE_3) ; // link_mask = 5;
// BLE and FSK
uint32_t link_mask = (1 << SID_LINK_TYPE_1)

| (1 << SID_LINK_TYPE_2) ; // link_mask = 3;

2. time sync periodicity: The Amazon Sidewalk stack periodically requests GPS time from Amazon
Sidewalk services. The periodicity of these requests is the same for every link on an Endpoint. The
default value of this setting is two hours. An Endpoint that has good tolerance to clock drifts can set
this periodicity setting to a higher value to reduce the periodicity of the time sync requests going out
from the Endpoint. Higher periodicity configuration results in lower time sync requests, saving power

3. callbacks: a pointer to the callback structure documented above.

4. BLE link config: static configuration for BLE link. The Amazon Sidewalk stack expects a pointer
to a statically allocated structure. The Amazon Sidewalk stack does not copy the structure contents
to its own context. This requires the developer’s application to statically allocate memory for this link
config structure. The memory allocated to the BLE link config structure shall only be freed during
de-initialization of the Amazon Sidewalk stack.

5. Sub-GHz link config: static configuration for the FSK link. The Amazon Sidewalk stack expects
a pointer to a statically allocated structure. The Amazon Sidewalk stack does not copy the structure
contents to its own context. This requires the developer’s application to statically allocate memory for
this link config structure. The memory allocated to the Sub-Ghz link config structure shall only be
freed during de-initialization of the Amazon Sidewalk stack.

For details of the configuration structure and time sync periodicity setting, see the developer guide.

2.12 Sidewalk Handle

The Sidewalk handle is a pointer to an internal structure that is returned to the developer’s application
as part of the Amazon Sidewalk stack initialization. The developer’s application is required to pass this
handle when making Sid API calls. The Sidewalk handle is set to NULL when the Amazon Sidewalk stack
is de-initialized.

©2023 Amazon Technologies, Inc. 26 of 47 Non-confidential

Chapter 3

Amazon Sidewalk APIs

Amazon Sidewalk provides APIs for the developer’s application to configure, control and use the services of
the Amazon Sidewalk stack on an Endpoint.

For the list of error codes and their values see chapter 4.

3.1 sid_init

The Amazon Sidewalk stack can be initialized using the sid_init API. The sid_init API accepts a pointer
to the Amazon Sidewalk configuration see section 2.1.1. The sid_init API returns a pointer to its internal
handle. This handle needs to be passed to all other APIs. On initialization, the Amazon Sidewalk stack and
the link specific initialization sequences are executed. On initialization, message buffers and other control
structures are allocated however no radio activity occurs in this state. All features supported by the Amazon
Sidewalk stack (such as FFS, Time Synchronization, Security, etc.) are available without requiring further
feature-specific initialization.

sid_init should not be called in the context of any sid__event_ callbacks to avoid re-entrancy and recursion
issues. sid_init does not trigger any notifications to the callbacks that the developer has registered with
the Amazon Sidewalk stack.

Re-initializing the Amazon Sidewalk stack without de-initializing causes the sid_init to fail with the API
return error code SID_ERROR_ALREADY_INITIALIZED.

The sid_init API returns error code SID_ERROR_INVALID_ARGS if any of the following conditions are met:
1. Pointers to config and handle are NULL.
2. The time synchronization periodicity is configured with a value which is not in the valid range
3. The FFS over FSK periodicity is configured with a value which is not in the valid range.
4

. link_mask has SID_LINK_TYPE_2 (FSK) or SID_LINK_TYPE_3 (LoRa) support but the sub_ghz_config
is NULL.

The sid_init API returns error code SID_ERROR_NOSUPPORT if any of the following conditions are met:

1. link_mask in the config structure has an unsupported combination of link types. The following list are
unsupported combinations. Note for FSK and LoRa a device may have the capability to support both
link types, but FSK and LoRa cannot be active at the same time.

(a) SID_LINK_TYPE_3(LoRa) only
(b) SID_LINK_TYPE_3(LoRa) and SID_LINK_TYPE_2 (FSK)
(¢c) SID_LINK_TYPE_2(BLE) and SID_LINK_TYPE_2 (FSK) and SID_LINK_TYPE_3 (LoRa)

27

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

2. link_mask is configured to SID_LINK_TYPE_2 (FSK) only, and FFS registration over FSK is disabled
either through run time config or through a compilation flag. Please note that FFS registration over
FSK can be disabled if 1ink_mask includes BLE. For instance 1ink_mask configured to SID_LINK_TYPE_1
(BLE) and textttSID_LINK_ TYPE_2 (FSK) can have FFS registration over FSK disabled.

The sid_init API returns error code SID_ERROR_NONE when the Amazon Sidewalk stack initialization with
the requested configuration is successful.

VEXS

* Initializes the Sidewalk library for the chosen link type.

*

* sid_init() can only be called once for the given sid_config.link_type
* unless sid_deinit() is called first.

*

* @see sid_deinit

*

* @param[in] config The required configuration in order to properly

* initialize Sidewalk for the chosen link type.

* @param[out] handle A pointer where the the opaque handle type will be
* stored. ‘handle‘ is set to NULL on error.

*

* @returns #SID_ERROR_NONE on success.

* @returns #SID_ERROR_ALREADY_INITIALIZED if Sidewalk was already initialized
* for the given link type.

*/

sid_error_t sid_init(const struct sid_config *config,
struct sid_handle #*xhandle);

// Initialize BLE and LoRa 1links

struct sid_config config = {
.link_mask = (1 << SID_LINK_TYPE_1 | 1 << SID_LINK_TYPE_3),
.time_sync_periodicity_seconds = 7200,
.callbacks = &event_callbacks,
.link_config = app_get_ble_config(), // update the BLE config
.sub_ghz_link_config = app_get_sub_ghz_config(), // update sub GHz config

1
static struct sid_handle *sidewalk_handle;
sid_error_t ret = sid_init(config, &sid_handle);

3.2 sid_deinit

The Amazon Sidewalk stack can be de-initialized using the sid_deinit API. The sid_deinit API requires
the pointer to the internal handle that was provided to the developer’s application during initialization. The
sid_deinit API stops the links that are initialized during sid_init by calling sid_stop. The time is reset
to zero which means that when the the Amazon Sidewalk stack is initialized with the sid_init again, the
Amazon Sidewalk stack is required to acquire time synchronization again. There is no separate API required
to de-initialize any features, calling the sid_deinit API causes all the routines that de-initialize features to
be called.

sid_deinit does not trigger any notifications to the callbacks that the developer has registered with the
Amazon Sidewalk stack.

sid_init can be called with a different or the same config after sid_deinit is called. sid_deinit should not
be called in the context of any sid_deinit to avoid re-entrancy and recursion issues.

The pointer to the internal handle that the developer’s application receives is set to NULL.

©2023 Amazon Technologies, Inc. 28 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

*

*
*
*
*
*
*
*
*
*

*/

The sid_deinit API call returns SID_ERROR_INVALID_ARGS, if the handle passed is NULL.

The sid_deinit API call returns SID_ERROR_INVALID_STATE, if the Amazon Sidewalk stack is already
de-initialized.

The sid_deinit API call return SID_ERROR_NONE, if the Amazon Sidewalk stack is successfully de-
initialized.

De-initialize the portions of the Sidewalk library associated with the
given handle.

@see sid_init

@param[in] handle A pointer to the handle returned by sid_init()

@returns #SID_ERROR_NONE in case of success

sid_error_t sid_deinit(struct sid_handle =*handle);

sid_error_t ret = sid_deinit(handle);

3.3 sid_start

The

Amazon Sidewalk stack can be started using the sid_start API. The Sidewalk handle provided to the

developer’s application during initialization is required to be passed to the sid_start API. The link_mask
passed to sid_start can be the same as the link_mask passed to the sid_init API or a subset of the
links passed to the sid_init API. The links that are not initialized cannot be started. For example, if
SID_LINK_TYPE_1 and SID_LINK_TYPE_2 are initialized, the developer’s application can start only one link or
both the links as follows:

1
2

. Setting the link_mask to SID_LINK_TYPE_1 or SID_LINK_TYPE_2 starts one link.
. Setting the link_mask to SID_LINK_TYPE_1 and SID_LINK_TYPE_2 starts both the links.

A call to sid_start triggers the following behavior:

1

. If the Amazon Sidewalk stack is not registered, the Amazon Sidewalk stack starts registration based on

the links that have started. If both SID_LINK_TYPE_1 and SID_LINK_TYPE_2 have started, and if FFS
over FSK is enabled, the registration procedure starts in SID_LINK_TYPE_2 (FSK), and the registration
procedure also starts on SID_LINK_TYPE_1 (BLE). The registration procedure is completed based on
whichever Gateway is in range: if an Amazon Sidewalk BLE Gateway is in range, the registration
procedure is started and completed on BLE link and if an Amazon Sidewalk FSK Gateway is in range,
registration procedure is started and completed on the FSK link. The developer’s application can
force the Amazon Sidewalk stack to perform registration on the desired link by starting only that link.
The developer’s application can initialize BLE and FSK links, but may then start just the BLE link
if the developer requires registration to complete on the BLE link or the developer’s application may
start just the FSK link if the developer requires registration to complete on the FSK link. Note that
registration is not supported on the LoRa link.

. If the Amazon Sidewalk stack does not have time synhcronization, the Amazon Sidewalk stack acquires

time based on the links that are started. If more than one link has started, the time acquisition
procedure is started simultaneously on all links that have started.

(a) On the BLE link, the Amazon Sidewalk stack updates the beacon’s payload requesting the GPS
time.

Non-confidential 29 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

3

co

*

b S S R I . S I R T S B

(b) On the FSK link, the Amazon Sidewalk stack synchronizes to an FSK Gateway in range and sends
a time request message to Amazon Sidewalk cloud services.

(¢) on the LoRa link, the Amazon Sidewalk stack immediately sends the time request message to
Amazon Sidewalk cloud services.

. After sid_start is called the link behaves as follows

(a) on BLE, the Endpoint is always beaconing. If the device has an uplink message to send, the
beacon’s payload is updated with the intent to connect with a BLE Gateway to send the uplink
message. If there is no uplink message to send, the Endpoint advertises its presence to the Amazon
Sidewalk BLE Gateways to receive downlink messages from the Amazon Sidewalk cloud services.

(b) on FSK, the Endpoint synchronizes with the Amazon Sidewalk FSK Gateway and, based on the
device profile configured, performs a join procedure through the Amazon Sidewalk FSK Gateway
with the Amazon Sidewalk cloud services. For more details on the join procedure and device
profiles see the device profile document.

(c) on LoRa, the device performs the join procedure with the Amazon Sidewalk cloud services. For
more details on join procedure and device profile, see the device profile document.

. sid_start should not be called in the context of any sid_ event_ callbacks to avoid re-entrancy and
recursion issues.

sid_start uses the on_status_changed callback to notify the developer of the Amazon Sidewalk stack
status. The on_status_changed callback notifies the developer’s application of the Sidewalk state on
the Endpoint, whether it is registered, whether it has acquired GPS time and the connection status of
the links that are being started.

If a link that has already started, is started again, SID_ERROR_NONE is returned.

The Amazon Sidewalk stack returns SID_ERROR_INVALID_ARGS if any of the following is true:
(a) sid_start is called with a handle that is NULL.
(b) sid_start is called before sid_init has been called at least once
(c¢) link_mask contains links that are not initialized but are being requested to start.

. The Amazon Sidewalk stack returns SID_ERROR_NONE, if the requested links can be started successfully.

Makes the Sidewalk library start operating.

The notifications registered during sid_init() are invoked once sid_start()
is called.

On an unregistered Sidewalk Endpoint sid_start() will put the Sidewalk
library into a state ready for device registration, typically the device is
registered with a separate mobile application or MCU SDK tool.

After registration the Sidewalk Endpoint will receive a time sync message
from an accessible Sidewalk gateway. This is a prerequisite to establish
up-link or down-1link data connectivity.This is visible to the developer by
#SID_STATE_READY and #SID_STATUS_TIME_SYNCED.

If sid_stop() is called after receiving #SID_STATE_READY the Sidewalk
library will cache the time sync for a minimum of SID_TIME_SYNC_MIN_PERIOD
seconds. This value should not be modified by the developer using the API.

sid_start() can be used to start one or more links at once.

©2023 Amazon Technologies, Inc. 30 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

To start a single link, eg #SID_LINK_TYPE_1, link_mask = SID_LINK_TYPE_1,
To start more than one link, eg #SID_LINK_TYPE_1 and #SID_LINK_TYPE_3 ,
link_mask = SID_LINK_TYPE_1 | SID_LINK_TYPE_3

@note Developer can only start a link_type that was initialized in
sid_init ()

@see sid_stop

@param[in] handle A pointer to the handle returned by sid_init()
@param[in] link_mask The links that need to started.

X% 3k %X X % X X ¥ X X X

*

@returns #SID_ERROR_NONE in case of success.
*/
sid_error_t sid_start(struct sid_handle xhandle, uint32_t link_mask);

// To start BLE and FSK links and initializing both BLE and FSK links
uint32_t link_mask = (SID_LINK_TYPE_1 | SID_LINK_TYPE_2);

// To start BLE link only after initializing BLE and FSK links
uint32_t link_mask = SID_LINK_TYPE_1;

// To start FSK link only after initializing BLE and FSK links
uint32_t link_mask = SID_LINK_TYPE_2;

sid_error_t ret = sid_start(handle, link_mask);

3.4 sid_stop

The Amazon Sidewalk stack can be stopped by calling the sid_stop API. The Sidewalk handle provided to
the developer’s application during initialization is required to be passed to the sid_stop API.

The link_mask passed to sid_stop can be the same as the link_mask passed to the sid_init API or a
subset of the links passed to the sid_init API. The links that are not initialized cannot be stopped. For
example, if SID_LINK_TYPE_1 and SID_LINK_TYPE_2 are initialized, the developer’s application can stop one
link or both links as follows:

1. To stop one link, set the 1ink_mask to SID_LINK_TYPE_1 or SID_LINK_TYPE_2.
2. To stop both links, set the 1ink_mask to SID_LINK_TYPE_1 and SID_LINK_TYPE_2.
A call to sid_stop triggers the following behavior:
1. The links that are requested to be stopped are handled as follows:
(a) on the BLE link

i. If the Endpoint was in connected state, calling sid_stop causes the Amazon Sidewalk stack
to disconnect

ii. If the Endpoint was in advertisement state, calling sid_stop causes the Endpoint to stop
beaconing.

Note that the BLE radio is not set to sleep on called sid_stop.

(a) on the FSK link, calling sid_stop causes the Amazon Sidewalk stack to disconnect from the
Amazon Sidewalk FSK Gateway and sets the radio to sleep.

Non-confidential 31 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

=2

*

X% 3k X X 3k X X % 3% X X %k X X X % X X % X X % % X X % %X X ¥ %

*/
sid

VEXS
*

(b) on the LoRa link, calling sid_stop causes the Amazon Sidewalk stack to set the radio to sleep.

. sid_stop notifies the Amazon Sidewalk stack status to the developer through the on_status_changed
callback. The on_status_changed callback notifies the developer’s application of the Sidewalk state on
the Endpoint, whether it is registered, whether it has time synchronization and the connection status
of the links that are started.

sid_stop should not be called in the context of any sid_event_ callbacks to avoid re-entrancy and
recursion issues.

If a link that is already stopped is stopped again, SID_ERROR_NONE is returned.

The Amazon Sidewalk stack returns SID_ERROR_INVALID_ARGS if any of the following is true:
(a) sid_stop is called with a handle that is NULL.

(b) sid_stop is called before sid_init has been called at least one time.

(¢) link_mask is set to request links to stop that are not initialized.

. The Amazon Sidewalk stack returns SID_ERROR_NONE, if the requested links can be stopped successfully.

Makes the Sidewalk library stop operating.

No messages will be sent or received and no notifications will occur after
sid_stop() is called.

Link status will be changed to disconnected and time sync status is cached
after sid_stop() is called.

sid_stop() can be used to stop one or more links at once.

To stop a single link, eg #SID_LINK_TYPE_1, link_mask = SID_LINK_TYPE_1,
To stop more than one link, eg #SID_LINK_TYPE_1 and #SID_LINK_TYPE_3 ,
link_mask = SID_LINK_TYPE_1 | SID_LINK_TYPE_3

@note Developer can only stop a link_type that was initialized in
sid_init ()

@see sid_start

@warning sid_stop() should be called in the same caller context as
sid_process ().

@warning sid_stop() must not be called from within the caller context of
any of the sid_event_callbacks registered during sid_init() to avoid
re-entrancy and recursion problems.

@warning RTC should not be stopped after sid_stop() is called.

@param[in] handle A pointer to the handle returned by sid_init ()
@param[in] link_mask The links that need to be stopped.

@returns #SID_ERROR_NONE in case of success.
_error_t sid_stop(struct sid_handle *handle, uint32_t link_mask);

To stop BLE and FSK links and initializing and starting both BLE
and FSK links */

©2023 Amazon Technologies, Inc. 32 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

uint32_t link_mask = (SID_LINK_TYPE_1 | SID_LINK_TYPE_2);

// To stop BLE link only after initializing BLE and FSK links
uint32_t link_mask = SID_LINK_TYPE_1;

// To start FSK link only after initializing BLE and FSK links
uint32_t link_mask = SID_LINK_TYPE_2;

sid_error_t ret = sid_stop(handle, link_mask);

3.5 sid_process

When the Amazon Sidewalk stack calls the developer’s registered callback of on_event, the developer’s
application is required to call sid_process. The event sources for the Amazon Sidewalk stack are timers
and the radio. The timer events are generated when the Amazon Sidewalk stack schedules events to occur
in the future to maintain its states. The radio events are generated by the radio when a particular low
level radio process is complete, for example transmitting a message over the air, receiving a message, radio
transmit and receive errors etc. The timer and radio events are generated in the Interrupt Service Routine
(ISR) context. sid_process should not be called in the same context in which on_event is notified to the
developer’s application. This is because on_event notifies internal events that run and maintain Sidewalk
states to the developer’s application. This notification process is a slow operation that must not be performed
in ISR context. Note that these internal events are not meaningful to the developer.

SID_ERROR_STOPPED is returned if all the links are stopped.
SID_ERROR_INVALID_ARGS is returned if the Amazon Sidewalk stack is not initialized.
SID_ERROR_NONE is returned if the Amazon Sidewalk stack can successfully process its internal events.

Failure to call sid_process after being notified of an event by on_event causes events of the Amazon Sidewalk
stack to remain in an unprocessed state. sid_process should be called before calling sid_stop or sid_deinit.

/**

*

Process Sidewalk events.

When there are no events to process, the function returns immediately.
When events are present, sid_process() invokes the sid_event_callbacks
registered during sid_init() within its calling context. You may not
receive any callbacks for internal events.

You are required to schedule sid_process() to run within your main-loop or
running context when the sid_event_callbacks.on_event callback is received.

Although not recommended for efficiency and power usage reasons,
sid_process() can also be called even if sid_event_callbacks.on_event has
not been received, to support main loops that operate in a polling manner.

@warning sid_process() must not be called from within the caller context of
any of the sid_event_callbacks registered during sid_init() to avoid
re-entrancy and recursion problems.

@see sid_init
@see sid_start
@see sid_event_callbacks

¥ 0% 3k X % % 3k X X % X X % %X X X % X X % %X %

@param[in] handle A pointer to the handle returned by sid_init ()

Non-confidential 33 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

*

* @returns #SID_ERROR_NONE in case of success.

* @returns #SID_ERROR_STOPPED if sid_start() has not been called.
*/

sid_error_t sid_process(struct sid_handle *handle);

sid_error_t ret = sid_process(handle);

3.6 sid_put_msg

Messages can be sent over Amazon Sidewalk from an Endpoint by calling the sid_put_msg API. For more
details on message’s metadata, attributes to configure message’s metadata, and MTU, see section 2.8.

The Amazon Sidewalk stack generates a unique ID for a every message that it accepts to send. The message
ID starts from the value zero at the time of reset and incremented by one on every message sent including
Amazon Sidewalk internal messages. The maximum value that this unique ID is incremented to is 65535,
after which it resets to zero. The message ID is used as follows:

1. For the LoRa link, the Amazon Sidewalk stack uses the message ID to notify the developer’s application
of the sent status of the message over the air.

2. For BLE and FSK links, the message ID is used for Gateway acknowledgements.

3. if the call to sid_put_msg configures the message to request an acknowledgement from AWS IoT Core
for Amazon Sidewalk. AWS IoT Core for Amazon Sidewalk uses the message ID to notify the message’s
acknowledgement status. The notification is as follows:

(a) If the message is sent successfully over the air. This is notified to the developer’s application using
the on_msg_sent callback. The on_msg_sent callback has a pointer to the message descriptor
that has the same message ID that was provided to it at the call made to sid_put_msg. The
on_msg_sent callback does not guarantee that the message has been received successfully by AWS
ToT Core for Amazon Sidewalk. For messages sent by BLE and FSK, the on_msg_sent callback
only notifies the developer’s application that the message has been sent over the air, and that
the mesage was acknowledged by a Gateway. For messages sent by LoRa, the on_msg_sent only
indicates that the message has been sent over the air successfully.

(b) If the message can not be sent successfully over the air, the developer’s application is notified using
the on_send_errorcallback. The on_send_error callback has a pointer to the message descriptor
that has the same message ID that was provided to it at the call made to sid_put_msg. Note
that on_msg_sent and on_send_error notifications are mutually exclusive. For a given message
ID, both callbacks will not be notified, only one of them is notified to the developer. on_msg_sent
is called for successful transmission and on_send_error is called for failure to transmit.

(¢) If the message has been acknowledged by AWS IoT Core for Amazon Sidewalk, if it was configured
to receive an acknowledgement in the message’s transmit attributes. A message which has the
acknowledgement field set to true in its transmit attributes gets the first notification that the
message has been successfully sent using the on_msg_sent callback and also another notification
that the message has been successfully acknowledged by AWS IoT Core for Amazon Sidewalk
through on_msg_receivedcallback.

The message attributes passed define the behavior the Amazon Sidewalk stack applies to the message. The
messages’ transmit attributes play a role only in this API. The developer’s application uses this API to
inform the Amazon Sidewalk stack of the following attributes:

1. The message is fire and forget, this message has acknowledgement set to false.

2. The Amazon Sidewalk stack is required to retry the message. The number of retries field governs this
setting.

©2023 Amazon Technologies, Inc. 34 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

3. The period that the Amazon Sidewalk stack is required to hold the message before reporting error
code SID_ERROR_TIMEOUT using the on_msg_sent_error callback.

4. The retry periodicity is linear and is derived from time to live and number of retries. For example:
for a message configured with time to live as 60 seconds and number of retries as 3, the Amazon
Sidewalk stack attempts to retry the message once every 20 seconds until an acknowledgement is
received from the AWS IoT Core for Amazon Sidewalk. Once the acknowledgement is received, the
developer’s application is notified using on_msg_received that an acknowledgement has been received
for the message. Acknowledgements can be differentiated from regular messages notified through
the on_msg_received callback by using the is_msg_ack field in the receive attributes in the message
descriptor.

When a call to sid_put_msg is made, the receive message attributes of the message descriptor are disregarded
by the Amazon Sidewalk stack. This is because sid_put_msg is used to send messages and receive attributes
in the message descriptor are only valid for the downlink messages or for Acknowledgements sent by AWS
ToT and notified using the on_msg_received callback.

For fire and forget messages, if the time to live field in the transmit attributes is set to zero, the Amazon
Sidewalk stack holds the message in its transmit queue for a maximum period of two minutes. In this period,
the Amazon Sidewalk stack tries to send the message over the air. If the message cannot be sent over the
air within two minutes, the developer’s application is notified with the error code SID_ERROR_TIMEOUT.

A message can be configured to be sent on a specific link or a combination of the links. This setting is in
the 1ink_maskfield of the message descriptor. The rules are as follows:

1. If only one link is specified in the 1ink_mask:

(a) If the link is not connected, the Amazon Sidewalk stack will fail to send messages with the error
SID_ERROR_INVALID_STATE.

(b) If the link is connected the Amazon Sidewalk stack will accept the message.
2. If more than one link is specified in the 1ink_mask the following rules apply:

(a) If only one link is in the connected state, the Amazon Sidewalk stack will send the message over
the link which is in connected state.

(b) If all the links in the link_mask are in disconnected state, sid_put_msg fails with the error code
SID_ERROR_INVALID_STATE.

(¢) If more than one link specified in the link_mask is in the connected state, then the Amazon
Sidewalk stack follows a pre-defined order: BLE has the highest priority, followed by FSK and
then LoRa has the lowest priority.

sid_put_msg returns SID_ERROR_OOM when the Amazon Sidewalk stack does not have enough buffers to
send the message. Whenever the sid_put_msg is called, the stack allocates a buffer from its pre-allocated
memory pool and queues the message for transmission. If the developer’s application requests transmissions
of messages at a rate higher than the Amazon Sidewalk stack can transmit messages, the Amazon Sidewalk
stack runs out of buffers and messages start to fail with the SID_ERROR_OOM error code. It is recommended that
the developer’s application should control the rate at which the messages are requested to be transmitted.

When sid_put_msg starts to fail messages with SID_ERROR_OOM, callbacks indicate whether the message was
transmitted as follows:

1. For messages that do not require retries the on_msg_sent or on_msg_sent_error callbacks indicate
whether the message was transmitted.

2. For messages that are configured to expect an acknowledgement from AWS IoT Core for Amazon
Sidewalk the on_msg_received callback gives an additional indication of whether the message was
received by AWS ToT Core for Amazon Sidewalk.

sid_put_msg returns SID_ERROR_INVALID_ARGS when one or more of the following conditions occurs:

Non-confidential 35 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

1. The pointer to the msg structure or the pointer to the Sidewalk handle, or the pointer to the message
descriptor is NULL.

2. The message size is zero or the message size is greater than 255 bytes.

3. An acknowledgement was requested from AWS IoT Core for Amazon Sidewalk, but either the number
of retries is zero or the time to live is zero.

4. The message type is RESP, and the message id is greater than 65535.

sid_put_msg returns SID_ERROR_INVALID_STATE if any of the following conditions occur:

1. The Sidewalk state is not ready. The Amazon Sidewalk stack can send and receive messages only when
it’s state is ready. State ready requires, the Endpoint to be registered, acquired GPS time and at least
one link is connected.

2. The link_mask specifies a link that is in disconnected state. For example, when the Amazon Sidewalk
stack’s BLE and FSK links are started. and only the FSK link is in connected state, and the BLE link
is in disconnected state, if the developer’s application sets the 1ink_mask field in the message descriptor
to BLE only, sid_put_msg fails with the SID_ERROR_INVALID_STATE error code.

sid_put_msg returns SID_ERROR_NOSUPPORT if a link mode is not supported on the link the message is being
requested to be sent on.

sid_put_msg returns SID_ERROR_NONE when the Amazon Sidewalk stack has successfully accepted the message
for transmission. When sid_put_msg returns SID_ERROR_NONE this does not imply that the Endpoint’s Ama-
zon Sidewalk stack has already successfully transferred the message to AWS IoT Core for Amazon Sidewalk,
instead it implies that the message has been successfully queued in the Endpoint’s internal transmit queue.
The sent status of the message is notified to the developer through on_msg_sent and on_msg_sent_error
for fire and forget messages and for messages requiring acknowledgement from AWS IoT Core for Amazon

Sidewalk.
/[**
* Queues a message.
*
* @note msg_desc can be used to correlate this message with the
* sid_event_callbacks.on_msg_sent and sid_event_callbacks.on_send_error
* callbacks.
*
* @note When sending #SID_MSG_TYPE_RESPONSE in response to #SID_MSG_TYPE_GET,
* the developer is expected to fill the id field of message descriptor with
* the id from the corresponding #SID_MSG_TYPE_GET message descriptor.
* This allows the sid_api to match each unique #SID_MSG_TYPE_RESPONSE with
* #SID_MSG_TYPE_GET.
*
* @param[in] handle A pointer to the handle returned by sid_init()
* @param[in] msg The message data to send
* @param[out] msg_desc The message descriptor this function fills which
* identifies this message.
* Only valid when #SID_ERROR_NONE is returned.
*
* @returns #SID_ERROR_NONE when the message is successfully placed in the
* transmit queue.
* @returns #SID_ERROR_TRY_AGAIN when there is no space in the transmit queue.

*
si

/

d_error_t sid_put_msg(struct sid_handle *handle,
const struct sid_msg #*msg,
struct sid_msg_desc *msg_desc);

©2

023 Amazon Technologies, Inc. 36 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

/* send a fire and forget message of length 10 bytes and type notify to
* AWS IoT, over BLE link with time to live as 60 seconds */
#define MAX_MSG_PAYLOAD_SIZE 255
static uint8_t payload[MAX_MSG_PAYLOAD_SIZE];
struct sid_msg_desc msg_desc = {
.link_type = SID_LINK_TYPE_1,
.type = SID_MSG_TYPE_NOTIFY,
.mode = SID_LINK_MODE_CLOUD,
.msg_desc_attr = {
.tx_attr = {

.request_ack = false,
.num_retires = 0,
.ttl_in_seconds = 60,
},
3,
1
struct sid_msg msg = {
.data = payload,
.size = 10,

};

sid_error_t ret;
ret = sid_put_msg(handle, &msg, &msg_desc);

/* send message of length 100 bytes and type set to AWS IoT, over BLE or FSK
* link with request_ack set to true, number of retries to 3 and time to live
* as 120 seconds */

#define MAX_MSG_PAYLOAD_SIZE 255

static uint8_t payload[MAX_MSG_PAYLOAD_SIZE];

struct sid_msg_desc msg_desc = {

.link_type = (SID_LINK_TYPE_1 | SID_LINK_TYPE_2),
.type = SID_MSG_TYPE_SET,
.mode = SID_LINK_MODE_CLOUD,
.msg_desc_attr = {
.tx_attr = {

.request_ack = true,
.num_retires = 3,
.ttl_in_seconds = 120,
3,
1,
1
struct sid_msg msg = {
.data = payload,
.size = 100,

3}

sid_error_t ret;
ret = sid_put_msg(handle, &msg, &msg_desc);

Non-confidential 37 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

3.7 sid_get_error

sid_get_error returns the error code, and is used after the on_status_changed callback has returned with
SID_STATE_ERROR

The sid_get_error API call returns the detail error code. The sid_get_error API call is only valid in the
context in which the on_status_changed callback was called

SID_ERROR_INVALID_ARGS is returned if the Amazon Sidewalk stack is not initialized.

/**

>

Get the current error code.

When the sid_event_callbacks on_status_changed callback is called

with a #SID_STATE_ERROR you can use this function to retrieve the
detailed error code. The error code will only be valid in the

calling context of the sid_event_callbacks.on_status_changed callback.

@param[in] handle A pointer to the handle returned by sid_init()

¥ % %k X X % %X X%

*

@returns The current error code
*/
sid_error_t sid_get_error(struct sid_handle *handle);

sid_error_t ret = sid_get_error(handle);

3.8 sid_get_mtu

The sid_get_mtu API call gets the MTU of the requested link.

SID_ERROR_INVALID_ARGS is returned if the Amazon Sidewalk stack is not initialized. Note that a specific
link type has to be requested to get the MTU and not a combination of link types

SID_ERROR_NOSUPPORT is returned if the link type requested is not initialized. For example: if the BLE link is
the only link that is initialized but the MTU of the FSK link is requested, SID_ERROR_NOSUPPORT is returned

SID_ERROR_NONE is returned if the link MTU can be successfully retrieved.

/**
* Gets the MTU associated with the given link_type.

*

* @param[in] handle A pointer to the handle returned by sid_init ()
* @param[in] link_type The link type to query

* @param[out] mtu A pointer to store the MTU size for the given
* link_type

*

* @returns #SID_ERROR_NONE on success.

*/

sid_error_t sid_get_mtu(struct sid_handle =xhandle,
enum SID_LINK_TYPE link_type,
size_t *mtu);

size_t mtu = 0Q;
sid_error_t ret = sid_get_mtu(handle, SID_LINK_TYPE_1, &mtu);

©2023 Amazon Technologies, Inc. 38 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

3.9 sid_option

The sid_option API call is used to configure settings of the Amazon Sidewalk stack. For details of configu-
ration see section 2.9

VEXS

* Set an option

*

* @see sid_option

* @param[in] handle A pointer to the handle returned by sid_init
* @param[in] option The option to set

* @param[in/out] data A pointer to the memory for input/output data
* associated with the option

* @param[in] len The size of the data array

*

* @returns #SID_ERROR_NONE on success.

*/

sid_error_t sid_option(struct sid_handle =xhandle,
enum sid_option option,
void =*data, size_t 1len);

// Set battery level to 50%

uint8_t battery_level_in_percentage = 50;

sid_error_t ret = sid_option(handle,
SID_OPTION_BLE_BATTERY_LEVEL,
&battery_level_in_percentage,
sizeof (battery_level_in_percentage));

// Set FSK device profile to Sync profile with the following settings
struct sid_device_profile target_dev_cfg = {
.unicast_params = {
.device_profile_id = SID_LINK2_PROFILE_2,
.rx_window_count = SID_RX_WINDOW_CNT_INFINITE,
.unicast_window_interval = {
.sync_rx_interval_ms = SID_LINK2_RX_WINDOW_SEPARATION_1,
1,
.wakeup_type = SID_TX_AND_RX_WAKEUP,
1,
};

// Get current configured for device profile for FSK

sid_error_t ret = sid_option(sid_handle,
SID_OPTION_9Q@@OMHZ_SET_DEVICE_PROFILE,
&target_dev_cfg,
sizeof (target_dev_cfg));

struct sid_device_profile curr_dev_cfg = {
.unicast_params = {
.device_profile_id = SID_LINK2_PROFILE_2,
3,
1
sid_error_t ret = sid_option(sid_handle,
SID_OPTION_9Q@@OMHZ_GET_DEVICE_PROFILE,
&curr_dev_cfg,
sizeof (curr_dev_cfg));

Non-confidential 39 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

// Set filter duplicates settings to allow all duplicates

bool filter_duplicates = true;

sid_error_t ret = sid_option(sid_handle,
SID_OPTION_SET_MSG_POLICY_FILTER_DUPLICATES,
&filter_duplicates,
sizeof (filter_duplicates));

// Get current configured duplicate setting

bool filter_duplicates;

sid_error_t ret = sid_option(sid_handle,
SID_OPTION_GET_MSG_POLICY_FILTER_DUPLICATES,
&filter_duplicates,
sizeof (filter_duplicates));

3.10 sid_set_factory_reset

The sid_set_factory_reset API shall be called when the application decides to clear the Amazon Sidewalk
stack’s configuration and keys that were established during registration from non-volatile storage. The
sid_set_factory_reset API places the Amazon Sidewalk stack in pre-registration state.

Application usage of this API shall be tied to a button press or other event to trigger a de-registration
process. When this API is invoked, if a link is available, the SDK attempts to send notification to the
Amazon Sidewalk cloud before clearing the Amazon Sidewalk stack’s configuration and keys.

On completion of clearing the Amazon Sidewalk stack’s configuration and keys, on_factory_reset callback
shall be triggered from the SDK.

SID_ERROR_INVALID_ARGS is returned by the API if the Amazon Sidewalk stack is not initialized or if the
Sidewalk handle is NULL.

SID_ERROR_STOPPED is returned by the APT if the Amazon Sidewalk stack is not started.

/**

* set factory reset

*

* Inform the sidewalk stack the factory reset event.

* The sidewalk library clears its configuration from the non volatile storage
* and resets its state accordingly.

* The sidewalk link status resets to #SID_STATE_DISABLED.

* The device needs to successfully complete device registration with the
* cloud services for the sidewalk library to sned and receive messages

*

* @param[in] handle A pointer to the handle returned by sid_init

*

* @returns #SID_ERROR_NONE on success.

*/

sid_error_t sid_set_factory_reset(struct sid_handle *handle);

3.11 sid_ble_connection_request

The sid_ble_connection_request API can only be used on the BLE link.

©2023 Amazon Technologies, Inc. 40 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

The sid_ble_connection_request API is called by the developer’s application to request connection from
a BLE Gateway, or to cancel a request for a connection.

When the sid_ble_connection_request API is called by the developer’s application to request connection,
the Endpoint requests an uplink connection on BLE through a BLE Gateway by updating its beacon’s
advertisement payload, requesting a BLE Gateway to connect.

The sid_ble_connection_request API must be called again to stop the request to connect. This is because
when the sid_ble_connection_request has requested a connection, the beacons have connect request set
to TRUE. The value of connect request then remains set to TRUE until set to FALSE by another call to
sid_ble_connection_request.

SID_ERROR_NOSUPPORT is returned by the API if the BLE link is not compiled into the image.
SID_ERROR_INVALID_ARGS is returned if one or more of the following conditions is True:

1. BLE is not initialized.

2. BLE is not started.

3. The Sidewalk handle is NULL.
SID_ERROR_INVALID_STATE is returned if one of the following conditions occurs:

1. The Sidewalk state is un-registered

2. The Sidewalk time sync state is FALSE (indicating that the Endpoint does not have time synchroniza-
tion)

SID_ERROR_ALREADY_EXISTS is returned if the BLE is already beaconing with the request to connect.
SID_ERROR_NONE is returned if the Amazon Sidewalk stack can successfully handle the request.

/**

*

Using this API, the device can request that the Sidewalk gateway initiates
a connection to the device while the device is advertising via BLE
(Sidewalk beaconing). After a connection is dropped the developer’s
application has to set this beacon state again. A Gateway may not always be
able to honor this request depending on the number of devices connected to
it.

@param[in] handle A pointer to the handle returned by sid_init().
@param[in] set Set or clear the connection request in BLE
advertising packet.

@returns #SID_ERROR_NONE on success.

@returns #SID_ERROR_ALREADY_EXISTS when device is already connected to a
Sidewalk gateway and connection request
is set.

¥ 0% 3k X % % 3k X X % X X ¥ %

*/
sid_error_t sid_ble_bcn_connection_request(struct sid_handle =xhandle,
bool set);

// Enable connection request
sid_error_t ret = sid_ble_bcn_connection_request(struct sid_handle =*handle,
true);

// Disable connection request
sid_error_t ret = sid_ble_bcn_connection_request(struct sid_handle =*handle,
false);

Non-confidential 41 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

3.12 sid_set_msg_dest_id

Amazon Sidewalk currently supports only one destination ID: AWS IoT Core for Amazon Sidewalk When
the developer’s application sends a message using the Amazon Sidewalk stack, using link mode cloud, the
destination ID is set to 32 (the ID of AWS IoT Core for Amazon Sidewalk). The sid_set_msg_dest_id API
configures the destination IDs, for future use when Amazon Sidewalk supports destination IDs other than
AWS IoT Core for Amazon Sidewalk.

SID_ERROR_INVALID_ARGS is returned if handle is NULL. SID_ERROR_NONE is returned if the destination ID can
be set successfully.

/**

*

Set destination ID for messages.

By default, the destination ID is set to #SID_MSG_DESTINATION_AWS_IOT_CORE
unless changed by sid_set_msg_dest_id(). The destination ID is retained
until the device resets or its changed by another invocation of
sid_set_msg_dest_id ().

@see sid_put_msg().

@param[in] handle A pointer to the handle returned by sid_init().
@param[in] id The new destination 1ID.

X% % % % X X % %X X X

>

@returns #SID_ERROR_NONE on success.
*/
sid_error_t sid_set_msg_dest_id(struct sid_handle *handle, uint32_t id);

sid_error_t ret = sid_set_msg_dest_id(handle, 32); //only AWS IoT destination
//is currently supported

3.13 sid_get_status
The status of the Amazon Sidewalk stack can be polled by calling the sid_get_status API. For details of
the sid_status structure, see section 2.6.

SID_ERROR_INVALID_ARGS is returned if the Sidewalk handle passed is NULL or if the Amazon Sidewalk stack
is not initialized.

SID_ERROR_NONE is returned when the current status can be successfully returned to the developer’s applica-
tion.

/**

*

Get current status from Sidewalk library.

@warning sid_get_status() should be called in the same caller context as
sid_process ().

@warning sid_get_status() must not be called from within the caller context
of any of the sid_event_callbacks registered during sid_init() to avoid
re-entrancy and recursion problems.

@param[in] handle A pointer to the handle returned by sid_init()
@param[out] current_status A pointer to store the sdk current status

ol S S . e . S

@returns #SID_ERROR_NONE in case of success.

©2023 Amazon Technologies, Inc. 42 of 47 Non-confidential

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

* @returns #SID_ERROR_INVALID_ARGS when Sidewalk library is not initialized.
*/
sid_error_t sid_get_status(struct sid_handle =*handle,

struct sid_status *current_status);

struct sid_status current_status;
sid_error_t ret = sid_get_status(handle, ¤t_status);

3.14 sid_get_time

sid_get_time provides the caller with the GPS time. UTC and local time are not supported.
SID_ERROR_NOSUPPORT is returned when the sid_get_time call requests time other than GPS time.
SID_ERROR_INVALID_ARGS is returned if one or more of the following conditions occurs:

1. The handle is NULL

2. The pointer to hold the time is NULL

3. The Amazon Sidewalk stack is not initialized
SID_ERROR_NONE is returned if the API can successfully provide GPS time.

/**

*

Get time from the Sidewalk library with the requested format.

@warning sid_get_time() should be called in the same caller context as
sid_process ().

@warning sid_get_time() must not be called from within the caller context
of any of the sid_event_callbacks registered during sid_init() to avoid
re-entrancy and recursion problems.

@param[in] handle A pointer to the handle returned by sid_init().

@param[in] format The time format to query

@param[out] curr_time A pointer to store the current time in
sid_timespec format.

@returns #SID_ERROR_NONE in case of success.

@returns #SID_ERROR_INVALID_ARGS when sidewalk is not initialized or not
registered or invalid format is supplied.

@returns #SID_ERROR_UNINITIALIZED when time is not available.

X% %k % % X X X % X X % %X X ¥ %

*

*/

sid_error_t sid_get_time(struct sid_handle =*handle,
enum sid_time_format format,
struct sid_timespec xcurr_time);

struct sid_timespec curr_time;

sid_error_t ret = sid_get_time(handle, SID_GET_GPS_TIME, &curr_time);

Non-confidential 43 of 47 ©2023 Amazon Technologies, Inc.

Amazon Sidewalk Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

©2023 Amazon Technologies, Inc. 44 of 47 Non-confidential

Chapter 4

Amazon Sidewalk Error Codes

For the values of the Amazon Sidewalk error codes see table 4.1.

45

Amazon Sidewalk

Sid API Developer Guide, Protocol Stack 1.0, Document Revision A

Sidewalk Error Code

SID_ERROR__NONE

SID_ERROR,_GENERIC

SID_ERROR_TIMEOUT

SID__ERROR_OUT_OF_ RESOURCES

SID_ERROR__OOM

SID_ERROR_OUT_OF_HANDLES

SID_ERROR_NOSUPPORT

SID_ERROR_NO_PERMISSION

SID__ERROR_NOT_FOUND

SID_ERROR__NULL_POINTER

SID_ERROR_PARAM_OUT_OF_RANGE

SID ERROR_INVALID_ ARGS

SID ERROR_INCOMPATIBLE PARAMS

SID_ERROR_10_ERROR

SID_ERROR_TRY_AGAIN

SID_ERROR_BUSY

SID__ERROR_DEAD_ LOCK

SID_ERROR_DATA TYPE OVERFLOW

SID _ERROR,_BUFFER OVERFLOW

SID__ERROR_IN_ PROGRESS

SID_ERROR__CANCELED

SID_ERROR_OWNER_DEAD

SID__ERROR_UNRECOVERABLE

SID_ERROR_PORT INVALID

SID__ERROR_PORT NOT OPEN

SID_ERROR__UNINITTIALIZED

SID_ERROR,_ALREADY_ INITIALIZED

SID__ERROR__ALREADY_ EXISTS

SID ERROR_ BELOW_THRESHOLD

SID__ERROR_STOPPED

SID_ERROR_STORAGE_READ_ FAIL

SID_ERROR,_STORAGE_WRITE_FAIL

SID ERROR_STORAGE_ ERASE FAIL

SID _ERROR_STORAGE_FULL

SID_ERROR_AUTHENTICATION_FAIL

SID_ERROR,__ENCRYPTION_FAIL

SID_ERROR,_DECRYPTION_ FAIL

SID__ERROR_ID_OBFUSCATION_FAIL

SID__ERROR_NO_ROUTE_AVAILABLE

SID__ERROR_INVALID_ RESPONSE

SID_ERROR_INVALID_STATE

Table 4.1: Amazon Sidewalk Error Codes.

©2023 Amazon Technologies, Inc. 46 of 47

Non-confidential

Glossary

BLE
CSS
Downlink
Endpoint

FFN
FFS
FSK
Gateway

ISR
LoRa
MTU
Sid API
Uplink

Bluetooth low energy.
Chirp Spread Spectrum.
Data sent from a Gateway to an Endpoint.

A device that accesses services of Amazon Sidewalk to transport messages to and from the
application services through AWS IoT.

Frustration Free Networking.
Frustration Free Setup.
2-Gaussian Frequency Shift Keying modulation scheme.

Connections between Endpoints and Amazon Sidewalk are established and maintained through
these devices. Gateways are Amazon and Ring devices. Amazon Sidewalk messages are trans-
ported between Amazon Sidewalk and the AWS IoT service through these devices. For a list of
Amazon Sidewalk enabled Amazon/Ring gateways and the links that they support see: (TBD
insert link).

Interrupt Service Routine.

Long Range proprietary protocol based on Chirp Spread Spectrum modulation scheme (CSS).
Maximum Transmission Unit.

Amazon Sidewalk Application Programming Interface.

Data sent from an Endpoint to a Gateway.

47

	Scope
	Overview of Functionality
	Supported Links
	BLE link
	FSK Link
	LoRa Link

	Supported Link modes
	Registration and Deregistration
	Registration using Mobile SDK
	Registration using FFS or FFN over BLE
	Registration using FFS or FFN over FSK
	De-Registration

	Time Synchronization
	Stack States
	Stack Status
	Link States
	BLE Link States
	FSK Link States
	LoRa Link States
	Route Selection For Downlinks

	Messages
	Message Types
	Amazon Sidewalk Message Attributes

	Stack IOCTLs
	Stack Notifications
	Stack Configuration
	Sidewalk Handle

	Amazon Sidewalk APIs
	sid_init
	sid_deinit
	sid_start
	sid_stop
	sid_process
	sid_put_msg
	sid_get_error
	sid_get_mtu
	sid_option
	sid_set_factory_reset
	sid_ble_connection_request
	sid_set_msg_dest_id
	sid_get_status
	sid_get_time

	Amazon Sidewalk Error Codes
	Glossary

