amazon sidewalk
]

Amazon Sidewalk Location Library Developer
Guide

Protocol Stack 1.0, Document Revision A
September 30, 2025

©2025 Amazon Technologies, Inc.
Non-confidential

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

Use of these Amazon Sidewalk specifications (the “Specifications”) is subject to your compliance with the
AWS Customer Agreement and the Service Terms (collectively, the “Agreement”), including all disclaimers
and limitations as to such use contained therein.

All statements, information, and data contained herein is subject to change without further notice to improve
reliability, function, or design. Certain parameters may vary in different applications and performance may
vary over time. It is your responsibility to validate that Amazon Sidewalk is suitable for your particular
device or application.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted by
this document.

Amazon Sidewalk is not intended for use in, or in association with, the operation of any hazardous environ-
ments or critical systems that may lead to serious bodily injury or death or cause environmental or property
damage, and you are solely responsible for all liability that may arise in connection with any such use.

This document is Non-Confidential.

©2024 Amazon Technologies, Inc. Amazon and all related marks are trademarks of Amazon.com, Inc. or its
affiliates.

©2025 Amazon Technologies, Inc. 2 of 15 Non-confidential

Contents

1 Overview 5
1.1 Imtroduction e 5
1.2 Supported Location Methods L 5
1.3 Location Levels 5

1.3.1 Level 1: Connected to Sidewalk via BLE 6
1.3.2 Level 2: Reserved e 6
1.3.3 Level 3: Send WiFi Scan 6
1.3.4 Level 4: Send GNSS Scan e 6
1.4 Architecture L 6

2 Usage Guide 7

2.1 Getting Startedo e 7
2.1.1 Compilation Configuration L 7
2.1.2 Library Overview o . e e 7

2.2 WiFi and GNSS Location Example (LR1110) 9
2.2.1 Example Platform Configuration oL 10
2.2.2 Location Library Usage« . . o it e e 10
2.2.3 Fragmentation Timeout Configuration 11

2.3 BLE-Only Location Example 11

2.4 Platform Abstraction Layers. e e 12

2.5 Best Practices 12

Glossary 15

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

©2025 Amazon Technologies, Inc. 4 of 15 Non-confidential

Chapter 1

Overview

1.1 Introduction

The Amazon Sidewalk Location Library enables enables Sidewalk customers to use a range of cloud-based
location solvers. Available in SDK >=1.19, this library provides an API that automatically selects the
most power and time efficient location mechanism based on available hardware and network conditions.
Developers will also have finer grain control to configure and override the mechanism used to determine
location as required.

1.2 Supported Location Methods

The location library supports three types of location resolution methods:

1. Sidewalk Network Location over BLE - Leverages existing BLE connections to determine location
through the Sidewalk network

2. WiFi Scan - Scans for nearby WiFi access points and sends MAC addresses to the cloud for location
resolution

3. GNSS Scan - Uses Global Navigation Satellite System to collect satellite vehicle data for coordinate
resolution

These methods are supported on two available link types:
o BLE (Bluetooth Low Energy)
o LoRa (Long Range)
Note: FSK with WiFi/GNSS scanning enabled is not currently supported.

WiFi and GNSS scanning leverage the Semtech LoRa Basics Modem middleware to manage and conduct
scans on the device.

1.3 Location Levels

Location levels are ordered by lowest effort first (power consumption and time) and are defined by the
available hardware on the device. The library automatically steps down through levels at configurable
timeouts.

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

1.3.1 Level 1: Connected to Sidewalk via BLE

e Power Consumption: No additional power draw

e Description: If the device can be located via BLE over the Sidewalk network, the device notifies the
cloud to resolve the location with no further effort. If the device is not connected via BLE or location
cannot be resolved, the next level is attempted.

1.3.2 Level 2: Reserved

o Power Consumption: N/A

e Description: This level is not yet supported and will default to the next level if reached.

1.3.3 Level 3: Send WiFi Scan

e Power Consumption: Low power consumption

e Description: Conduct and send a WiFi scan. Minimum of 1 AP must be found in scan or next level
will be attempted. If the cloud receives a low confidence score or no resolution is found, the device
application must be notified to increment and try the next level.

1.3.4 Level 4: Send GNSS Scan

e Power Consumption: Higher power consumption than WiFi scanning

e Description: Conduct and send a GNSS scan. Minimum 4 Satellite Vehicles must be found for scan
to be valid.

1.4 Architecture

The library provides a single interface for application developers to consume APIs for uplinking location
data. WiFi and GNSS have corresponding Platform Abstraction Layers (PALs) that are required when
these features are enabled.

©2025 Amazon Technologies, Inc. 6 of 15 Non-confidential

Chapter 2

Usage Guide

2.1 Getting Started

2.1.1 Compilation Configuration
To enable the location library in your project, the following CMake variable definitions must be set:

set (SID_SDK_CONFIG_ENABLE_LOCATION 1)

set (SID_SDK_CONFIG_ENABLE_WIFI 1)

set (SID_SDK_CONFIG_ENABLE_GNSS 1)
add_compile_definitions(SID_SDK_CONFIG_ENABLE_LOCATION=1)
add_compile_definitions (SID_SDK_CONFIG_ENABLE_WIFI=1)
add_compile_definitions (SID_SDK_CONFIG_ENABLE_GNSS=1)

SID_SDK_CONFIG_ENABLE_LOCATION enables the location library as part of the build. SID_SDK_CONFIG_ENABLE_WIFI
and SID_SDK_CONFIG_ENABLE_GNSS are features that can be enabled if available hardware supports WiFi and
GNSS scanning.

Note: Additional configurations may be required depending on the build system of the target.

2.1.2 Library Overview

The Amazon Sidewalk Location Library provides a set of APIs for configuring, initializing, and uplinking
location data to the cloud. The library follows a two-phase programming model:

2.1.2.1 Initialization

The location library must be initialized using sid_location_init() after sid_init() with the appropriate
handle and location configuration.

e handle: A pointer to the handle returned by sid_init()

e config: Location configuration structure containing your desired location methods, effort levels, and
callback function

Key configuration fields for the location config:
o sid_ location__type__mask: Specifies which location methods to enable (BLE, WiFi, GNSS).
« manage__effort: Whether to allow automatic effort level management.

e max_ effort: Maximum effort level the library can use.

7

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

o callbacks.on__update: Your callback function to receive location results including scan payloads in
the case of WiFi or GNSS.

o stepdowns: Timeout configurations for effort level transitions (only applicable if WiFi or GNSS is
enabled)

o fragmentation: Settings for message fragmentation handling. Setting timeout to 0 will result in
default.

2.1.2.2 Setting Up the Location Callback

The on_update callback provides an asynchronous notification of location operation results. This callback
must be implemented to handle the outcomes of location scanning and uplink operations.

Parameters:
e result: Pointer to struct sid_location_result containing operation results
o context: User-defined context pointer (optional, can be NULL)

The sid_location_result Structure:

The result structure contains the following fields:
 status: Operation status (enum sid_location_status)

— SID_LOCATION_LVL1_READY: BLE gateway location service is available on current gateway connec-
tion after init

— SID_LOCATION_LVL1_UNAVAILABLE: BLE gateway location service is not available on current gate-
way connection after init

— SID_LOCATION_SEND_DONE: Location data uplink completed
— SID_LOCATION_SCAN_DONE: Location scanning completed
o err: Error code indicating success or failure (sid_error_t)
e mode: The effort mode used for this operation (enum sid_location_effort_mode)
o link: The link type used for uplink (enum sid_link_type)
o payload: Scan data buffer (WiFi or GNSS scan results)
« size: Size of the payload data in bytes
Configuring the Callback:

// Define your callback function
void location_callback(const struct sid_location_result #*const result, void *context)
{

// Handle location operation results

// Check result->status, result->err, and process result->payload if applicable

3

static struct sid_location_config cfg = {
.sid_location_type_mask = SID_LOCATION_METHOD_ALL,
.manage_effort = true,
.max_effort = SID_LOCATION_EFFORT_L4,
.callbacks = {

.on_update = location_callback,

.context = &app_ctx, // Optional context pointer
3,
// ... other configuration fields

©2025 Amazon Technologies, Inc. 8 of 15 Non-confidential

Location Library Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

};
The function returns SID_ERROR_NONE in case of success.

2.1.2.3 Runtime

Location operations can be executed using sid_location_run() after the Sidewalk loop has been started
(sid_start()). This API initiates location scanning and/or uplink operations.

sid_error_t sid_location_run(struct sid_handle *handle,
struct sid_location_run_config #*config,
uint32_t delay_s);
Parameters:
e handle: A pointer to the handle returned by sid_init()
e config: Struct containing the configuration for the location request
o delay__s: Delay in seconds to start scan (if applicable) and uplink data
Configuration fields in struct sid_location_run_config:
« mode: Effort level for this specific operation (enum sid_location_effort_mode)
o type: Operation type (enum sid_location_run_type):
— SID_LOCATION_SEND_ONLY: Send-only operation
— SID_LOCATION_SCAN_ONLY: Scan-only operation
— SID_LOCATION_SCAN_AND_SEND: Combined scan and send operation
o buffer: Pointer to buffer for location data (uint8 t *)
o size: Size of the buffer (size t)

The function returns SID_ERROR_NONE in case of success. If effort mode is NOT managed, SID_LOCATION_EFFORT_DEFAULT
cannot be used for the mode.

2.1.2.4 De-Initialization
The location library must be deinitialized using sid_location_deinit() before calling sid_deinit().
The function takes the following parameter:
e handle: A pointer to the handle returned by sid_init()
The function returns SID_ERROR_NONE in case of success.

For detailed API documentation including function signatures, parameters, return values, and other available
apis, please refer to the Amazon Sidewalk API Developer Guide.

2.2 WiFi and GNSS Location Example (LR1110)

The following example shows how to enable GNSS and WiFi with the location library for use with the
LR1110 shield.

Non-confidential 9 of 15 ©2025 Amazon Technologies, Inc.

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

2.2.1 Example Platform Configuration
// file: app_location_lr1l1xx_config.h
#include <1lrl11xx_gnss_wifi_config.h>
const Irllxx_gnss_wifi_config_t *get_location_cfg(void);
The GNSS configuration supports two key parameters:
Constellation Type:
e SMTC_MODEM_GNSS_CONSTELLATION_GPS - Use GPS only constellation
e SMTC_MODEM_GNSS_CONSTELLATION_BEIDOU - Use BEIDOU only constellation
e SMTC_MODEM_GNSS_CONSTELLATION_GPS_BEIDOU - Use both GPS and BEIDOU constellations
Scan Mode:
e SMTC_MODEM_GNSS_MODE_STATIC - Scanning mode for non-moving objects
e SMTC_MODEM_GNSS_MODE_MOBILE - Scanning mode for moving objects

// file: app_location_1lrl11xx_config.c

static 1lr1ixx_gnss_wifi_config_t gnss_wifi_config = {
.constellation_type = SMTC_MODEM_GNSS_CONSTELLATION_GPS_BEIDOU,
.scan_mode = SMTC_MODEM_GNSS_MODE_MOBILE

1
const lrlilxx_gnss_wifi_config_t *get_location_cfg(void)
{
return &gnss_wifi_config;
3

// Platform parameters setup
platform_parameters_t platform_parameters = {
.mfg_store_region = sid_mfg_config_get(),
.platform_init_parameters.radio_cfg =
(radio_lr11xx_device_config_t x)get_radio_cfg(),
.platform_init_parameters.gnss_wifi_cfg =
(1Ir11xx_gnss_wifi_config_t *)get_location_cfg(),
1

2.2.2 Location Library Usage

// Create a location config with user supplied callback
void location_callback(const struct sid_location_result *const result, void *context)
{

// User can pull the payload for WiFi or GNSS in result->payload

// Handle different location methods based on result->mode

3

static struct sid_location_config cfg = {
.sid_location_type_mask = SID_LOCATION_METHOD_ALL,
.manage_effort = true,
.max_effort = SID_LOCATION_EFFORT_L4,
.callbacks = {
.on_update = location_callback,

3,

©2025 Amazon Technologies, Inc. 10 of 15 Non-confidential

Location Library Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

.stepdowns = { // Timeout(ms) to use before stepping down location level when usin;
.12_to_11 0,
.13_to_12 0,
.14_to_13 = o,

1,

.fragmentation = { // Fragmentation configurations to use when for location payload up.
.timeout_ms = @, // @ indicates use default timeout value
.max_retries = 1,

3+

// Initialize after sid_init()
sid_error_t res = sid_location_init(xapp_context->sidewalk_handle, &cfg);

// WiFi scan and send uplink
struct sid_location_run_config config = {

.type = SID_LOCATION_SCAN_AND_SEND,
.mode = SID_LOCATION_EFFORT_L3
};
sid_error_t res = sid_location_run(*app_context->sidewalk_handle, &config, 0);

// GNSS scan and send uplink
config.mode = SID_LOCATION_EFFORT_L4;
sid_error_t res = sid_location_run(xapp_context->sidewalk_handle, &config, 0);

2.2.3 Fragmentation Timeout Configuration

If configuring the fragmentation timeout, the timeout_ms parameter should be considered carefully. The
current cloud implementation calculates the timeout based on the total message fragmentation requirements
and link type characteristics.

The timeout will be calculated automatically if set to 0 and follows the following formula that mirrors the
cloud algorithm to wait/reassemble fragments:

timeout = (total_size / MTU) x link_type_duration x 2
Where:
e total_size / MTU determines the number of fragments required
e link_type_duration is the maximum time the specified link type can take to uplink one fragment
o The factor of 2 provides additional margin for retries to reach the cloud.
Current supported link type durations:
e LoRa: Up to 5 seconds per fragment

e BLE: BLE does not utilize fragmentation for location as the MTU is large enough. These configurations
will not apply

For example, a message requiring 4 fragments over LoRa would be: 4 x 5000 x 2 = 40000 milliseconds
timeout at the cloud. Consider setting timeout_ms appropriately based on your expected use case. Using a
timeout independent from the cloud fragmentation timeout may be desirable based on the use case.

2.3 BLE-Only Location Example

The following example shows how to use the location library with just Sidewalk Network Location over BLE.

Non-confidential 11 of 15 ©2025 Amazon Technologies, Inc.

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

// Create a location config with user supplied callback
void location_callback(const struct sid_location_result *const result, void *context)
{

// User can get the results of the uplink here

// Handle the location result based on status

}

static struct sid_location_config cfg = {
.sid_location_type_mask = SID_LOCATION_METHOD_BLE_GATEWAY,
.manage_effort = true,
.max_effort = SID_LOCATION_EFFORT_L1,
.callbacks = {

.on_update = location_callback,

3,

.stepdowns = { // Stepdowns are not applicable in the BLE-Only mode.
.12_to_11 = 0,
.13_to_12 = 0,
.14_to_13 = 0,

3,

.fragmentation = { // Fragmentation is not applicable in the BLE-Only mode.
.timeout_ms = 0,
.max_retries = 0,

3

3

// Initialize after sid_init()
sid_error_t res = sid_location_init(*xapp_context->sidewalk_handle, &cfg);

// Send location request after sid_start()
// (requires BLE connection to opted-in gateway)
struct sid_location_run_config config = {

.type = SID_LOCATION_SCAN_AND_SEND,
.mode = SID_LOCATION_EFFORT_DEFAULT
1
sid_error_t res = sid_location_run(xapp_context->sidewalk_handle, &config, 0);

2.4 Platform Abstraction Layers

If the device supports WiFi and GNSS scanning (levels 3 and 4), the WiFi and GNSS Platform Abstraction
Layers (PALs) must be implemented and linked. Reference implementations are provided that utilize the
Semtech LoRa Basics Modem middleware APIs.

The implementation available in the Sidewalk MCU SDK combines both WiFi and GNSS PALs as they
interface with the LoRa Basics Modem and utilize shared resources.

2.5 Best Practices

e Use sid_location_set_max_mode() to limit power consumption during low-power modes
e Configure appropriate stepdown timeouts based on your application requirements

o Always check return values from location API functions

Handle different status codes in your callback function appropriately

©2025 Amazon Technologies, Inc. 12 of 15 Non-confidential

Location Library Developer Guide, Protocol Stack 1.0, Document Revision A Amazon Sidewalk

o Allow the library to manage effort levels automatically when possible

e Consider using scan-only operations when immediate uplink is not required

Non-confidential 13 of 15 ©2025 Amazon Technologies, Inc.

Amazon Sidewalk Location Library Developer Guide, Protocol Stack 1.0, Document Revision A

©2025 Amazon Technologies, Inc. 14 of 15 Non-confidential

Glossary

GNSS Global Navigation Satellite System used for satellite-based location determination.

Location Level Hierarchical effort modes for location resolution, ordered by power consumption and time re-
quirements.

LR1110 Semtech transceiver with integrated GNSS and WiFi scanning capabilities.

MTU Maximum Transmission Unit.

PAL Platform Abstraction Layer.

15

	Overview
	Introduction
	Supported Location Methods
	Location Levels
	Level 1: Connected to Sidewalk via BLE
	Level 2: Reserved
	Level 3: Send WiFi Scan
	Level 4: Send GNSS Scan

	Architecture

	Usage Guide
	Getting Started
	Compilation Configuration
	Library Overview

	WiFi and GNSS Location Example (LR1110)
	Example Platform Configuration
	Location Library Usage
	Fragmentation Timeout Configuration

	BLE-Only Location Example
	Platform Abstraction Layers
	Best Practices

	Glossary

